1. Mark \(z = 1 + \sqrt{3}i \) on the complex plane. What are its polar coordinates? Then mark \(z^n \) for \(n = 1, 2, 3, 4 \). What is each in the form \(a + bi \)? What is each one in the form \(Ae^{i\theta} \)? Then mark \(z^n \) for \(n = 0, -1, -2, -3, -4 \).

2. Find a complex number \(a + bi \) such that \(e^{a + bi} = 1 + \sqrt{3}i \). In fact, find all such complex numbers. For definiteness, fix \(b \) to be positive but as small as possible. (This is probably the first one you thought of.) What is \(e^{n(a + bi)} \) for \(n = 1, 2, 3, 4 \)? (Hint: \(e^{n(a + bi)} = (e^{a + bi})^n \).) How about for \(n = 0, -1, -2, -3, -4 \)?