Part II Problems

Problem 1: [Sinusoidal input and output]

(a) Express \(\text{Re} \left(\frac{e^{3it}}{\sqrt{3} + i} \right) \) in the form \(a \cos(3t) + b \sin(3t) \). Then rewrite this in the form \(A \cos(3t - \phi) \). Now find this same answer using the following method. By finding its modulus and argument, write \(\sqrt{3} + i \) in the form \(Ae^{i\phi} \). Then substitute this into \(\frac{e^{3it}}{\sqrt{3} + i} \), and use properties of the exponential function to find \(B \) and \(\phi \) such that \(\frac{e^{3it}}{\sqrt{3} + i} = Be^{i(3t-\phi)} \). Finally, take the real part of this new expression.

(b) Find a solution to the differential equation \(\dot{z} + 3z = e^{2it} \) of the form \(we^{2it} \), where \(w \) is some complex number. What is the general solution?

(c) Find a solution of \(\dot{x} + 3x = \cos(2t) \) by relating this ODE to the one in (b). What is the general solution?