Part II Problems and Solutions

Problem 1: [Sinusoidal input and output]

(a) Express \(\text{Re} \left(\frac{e^{3it}}{\sqrt{3} + i} \right) \) in the form \(a \cos(3t) + b \sin(3t) \). Then rewrite this in the form \(A \cos(3t - \phi) \). Now find this same answer using the following method. By finding its modulus and argument, write \(\sqrt{3} + i \) in the form \(A e^{i\phi} \). Then substitute this into \(e^{3it} / (\sqrt{3} + i) \), and use properties of the exponential function to find \(B \) and \(\phi \) such that \(\frac{e^{3it}}{\sqrt{3} + i} = Be^{i(3t - \phi)} \). Finally, take the real part of this new expression.

(b) Find a solution to the differential equation \(\dot{z} + 3z = e^{2it} \) of the form \(we^{2it} \), where \(w \) is some complex number. What is the general solution?

(c) Find a solution of \(\dot{x} + 3x = \cos(2t) \) by relating this ODE to the one in (b). What is the general solution?

Solution: (a) \(\frac{e^{3it}}{\sqrt{3} + i} = \frac{(\sqrt{3} - i)}{4} (\cos(3t) + i \sin(3t)) \) has real part \(\frac{\sqrt{3}}{4} \cos(3t) + \frac{1}{4} \sin(3t) \).

Form the right triangle with sides \(a = \sqrt{3} \) and \(b = \frac{1}{4} \). The hypotenuse is \(A = 1/2 \) and the angle is \(\phi = \pi / 6 \).

\(\sqrt{3} + i = 2e^{\pi i/6} \) (by essentially the same triangle), so \(\frac{e^{3it}}{\sqrt{3} + i} = \frac{1}{2} e^{i(3t - \pi/6)}; B = \frac{1}{2}, \phi = \frac{\pi}{6} \), and \(\text{Re}(Be^{i(3t - \phi)}) = B \cos(3t - \phi) \), so you get the same answer.

(b) Substituting \(z = we^{2it} \), \(e^{2it} = w2ie^{2it} + 3we^{2it} \), so \(1 = w(2i + 3) \) or \(w = \frac{1}{2i+3} \). Thus a solution of the desired form is \(z_p = \frac{1}{2i+3} e^{2it} \). The general solution is \(z = z_p + ce^{-3t} \).

(c) If \(x = \text{Re}(z) \), the real part of \(\dot{z} + 3z = e^{2it} \) is \(\dot{x} + 3x = \cos(2t) \). So we are looking for \(\text{Re}(z_p) \), where \(z_p \) is the answer in part (b).

In polar form, \(2i + 3 = \sqrt{13}e^{i\phi} \), where \(\phi = \tan^{-1}(2/3) \). Thus,

\(z_p = \frac{1}{\sqrt{13}} e^{i(2t - \phi)} \)

We get

\(x_p = \text{Re}(z_p) = \frac{1}{\sqrt{13}} \cos(2t - \phi) \).

The general solution is then \(x = x_p + ce^{-3t} \).