18.03SC Unit 3 Exam Solutions

1. (a) The minimal period is 2.
 (b) \(f(t) \) is even.
 (c) \(x_p(t) = \frac{1}{\omega_n^2} + \frac{\cos(\pi t)}{2(\omega_n^2 - \pi^2)} + \frac{\cos(2\pi t)}{4(\omega_n^2 - 4\pi^2)} + \frac{\cos(3\pi t)}{8(\omega_n^2 - 9\pi^2)} + \cdots \)
 (d) There is no periodic solution when \(\omega_n = 0, \pi, 2\pi, 3\pi, \ldots \)

2. (a)
 ![Graph](image1)
 or
 ![Graph](image2)

 (b)
 ![Graph](image3)
 or
 ![Graph](image4)

(c) \(f'(t) = (u(t+1) - u(t-1)) - \delta(t+1) - \delta(t-1) \).

3. (a) \(v(t) = w(t) * u(t) = \int_0^t w(t-\tau)u(\tau)\,d\tau = \int_0^t (e^{-(t-\tau)} - e^{-3(t-\tau)})\,d\tau \)
 \(= e^{-t} e^{3t} \bigg|_0^t - e^{-3t} \bigg|_0^t = (1 - e^{-t}) - \frac{1 - e^{-3t}}{3} = \frac{2}{3} - e^{-t} + \frac{e^{-3t}}{3} \).
 (b) \(W(s) = \mathcal{L}[w(t)] = \frac{1}{s+1} - \frac{1}{s+3} \).
 (c) \(W(s) = \frac{1}{s+1} - \frac{1}{s+3} = \frac{(s+3) - (s+1)}{(s+1)(s+3)} = \frac{2}{s^2 + 4s + 3} \), so \(p(s) = \frac{1}{2} (s^2 + 4s + 3) \).

4. (a) \(\frac{s-1}{s} = 1 - \frac{1}{s} \rightarrow \delta(t) - u(t), \) so \(\frac{e^{-s}(s-1)}{s} \rightarrow \delta(t-1) - u(t-1) \).
 (b) \(F(s) = \frac{s+10}{s^3+2s^2+10s} = \frac{a}{s} + \frac{b(s+1) + c}{(s+1)^2 + 9} \). By coverup, \(a = \frac{10}{10} = 1 \). By complex coverup (multiply through by \((s+1)^2 + 9 \) and set \(s \) to be a root, say \(-1 + 3i\)), \(b(3i) + c = \frac{9+3i}{-1+3i} = -3i \), so \(b = -1, c = 0 \), and \(F(s) = \frac{1}{s} - \frac{s+1}{(s+1)^2 + 9} \), which is the Laplace transform of \(1 - e^{-t} \cos(3t) \).

5. (a) Poles at \(\{0, -1+3i, -1-3i\} \).
 (b) \(X(s) = W(s)F(s). \) \(F(s) = \frac{2}{s^2+4} \), so \(X(s) = \left(\frac{s+10}{s^3+2s^2+10s} \right) \left(\frac{2}{s^2+4} \right) \).
18.03SC Differential Equations
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.