Part II Problems

Problem 1: [Periodic solutions] Let \(g(t) \) be the function which is periodic of period \(2\pi \), and such that \(g(t) = t \) for \(-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \) and \(g(t) = \pi - t \) for \(\frac{\pi}{2} \leq t \leq \frac{3\pi}{2} \).

(a) Find a periodic solution to \(\ddot{x} + \omega_0^2 x = g(t) \) (if there is one).

(b) For what (positive) values of \(\omega_0 \) are there no periodic solution?

(c) Write \(\omega_r \) for the smallest number you found in (b). For \(\omega_0 \) just less than \(\omega_r \), what is the solution like, approximately? How about for \(\omega_0 \) just larger than \(\omega_r \)?

(d) For what values of \(\omega_0 \) are there more than one periodic solution?

(e) For the values of \(\omega_0 \) found in (d), are all solutions to \(\ddot{x} + \omega_0^2 x = g(t) \) periodic?