Part I Problems and Solutions

Problem 1: Compute the following matrix products:

a) \(\begin{bmatrix} 1 & 2 \\ x & y \end{bmatrix} \)

b) \(\begin{bmatrix} 1 \\ 2 \\ x & y \end{bmatrix} \)

c) \(\begin{bmatrix} a & b \\ c & d \\ x & y \end{bmatrix} \)

d) \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ x & u \\ y & v \end{bmatrix} \)

Solution:

a) \(x + 2y \)

b) \(x + y \\
 2x + 2y \)

c) \(ax + by \\
 cx + dy \)

d) \(\begin{bmatrix} x + 2y & u + 2v \\ 3x + 4y & 3u + 4v \end{bmatrix} \)

Problem 2: Let \(A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & -1 \\ 2 & 1 \end{bmatrix} \). Show that \(AB \neq BA \).

Solution:

\(AB = \begin{bmatrix} 4 & 1 \\ -2 & -4 \end{bmatrix} \)

\(BA = \begin{bmatrix} -3 & 1 \\ 5 & 3 \end{bmatrix} \)

Problem 3: Write the following equations as equivalent first-order systems.
Part I Problems and Solutions

a) \(\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + tx^2 = 0 \)

b) \(y'' - x^2y' + (1 - x^2)y = \sin x \)

Solution:

a) \(x'' + 5x' + tx^2 = 0 \rightarrow x' = y, \ y' = -tx^2 - 5y \)

b) \(y'' - x^2y' + (1 - x^2)y = \sin x \rightarrow y' = z, \ z' = (x^2 - 1)y + x^2z + \sin x \)

Problem 4: Solve the system \(x' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x \) in two ways:

a) Solve the second equation, substitute for \(y \) in the first equation, and solve it.

b) Eliminate \(y \) by solving the first equation for \(y \), then substitute into the second equation, getting a second order equation for \(x \). Solve it, and then find \(y \) from the first equation. Do your two methods give the same answer?

Solution:

\[\begin{bmatrix} x' \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]

or \(x' = x + y, \ y' = y \).

a) From the second equation, \(y = c_1e^t \), so \(x' - x = c_1e^t \), so the solution is \(x = c_2e^t + c_1te^t, \ y = c_1e^t \).

b) Here we eliminate \(y \) instead. \(y = x' - x \) so \((x' - x)' = x'' - 2x' + x = 0 \rightarrow (m - 1)^2 = 0 \) (char. eqn.). Thus, we have \(x = c_1e^t + c_2te^t, \ y = c_2e^t \) (since \(y = x' - x \)). This is the same as before, with \(c_1, c_2 \) switched.