18.04 Recitation 2
Vishesh Jain

1.1. Show directly using the definition of the complex derivative that \(\bar{z} \) is not complex differentiable.

1.2. What are the values that \(\lim_{z \to 0} \frac{\bar{z}}{z} \) can attain?

2.1. What are the real and imaginary parts of \(\cos(z) \)? Of \(\sin(z) \)?

2.2. What are these real and imaginary parts for \(z = x + i0 \)? What about for \(z = 0 + iy \)?

2.3. Is it true that \(\cos(z) \) and \(\sin(z) \) are bounded functions?

2.4. Is it true that \(\cos^2 z + \sin^2 z = 1 \)?

3.1 Show that \(e^z \) is continuous as a function of \(z \).

3.2. Use this to show that \(\cos(z) \) and \(\sin(z) \) are continuous as functions of \(z \).

3.3. Is \(\bar{z} \) continuous as a function of \(z \)? Is this consistent with Problem 1?

4.1. Express the following functions in the form \(f(z) = u(x, y) + iv(x, y) \): \(e^z \), \(z^2 \), \(\cos(z) \) and \(\sin(z) \) (see also Problem 2)

4.2. Compute the partial derivatives \(u_x, u_y, v_x, v_y \) for each of these functions. Do they satisfy the Cauchy-Riemann equations?

4.3. What is \(f'(z) \) in each of these cases?

4.3. Repeat this for \(\bar{z} \). Is this consistent with Problem 1?
18.04 Complex Variables with Applications
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.