18.04 Recitation 8
Vishesh Jain

1.1 Show that if \(g(z) \) has a simple zero at \(z_0 \), then \(1/g(z) \) has a simple pole at \(z_0 \).

1.2. Show that \(\text{Res}(1/g, z_0) = 1/g'(z_0) \).

1.3. Let \(f(z) = 1/\sin(z) \). Find all the poles, show that they are simple, and use the previous part to find the residues at these poles.

\textbf{Ans:} See Property 5 on page 5 of Section 8 for 1.1 and 1.2. See Example 8.11 for 1.3.

2.1. Let \(p(z) \) and \(q(z) \) be analytic at \(z = z_0 \). Assume \(p(z_0) \neq 0 \) and \(q \) has a simple zero at \(z_0 \). Show that \(\text{Res}_{z=z_0}(p(z)/q(z)) = p(z_0)/q'(z_0) \).

2.2. Let \(f(z) = \cot(z) \). Find all the poles, show that they are simple, and use the previous part to find residues at these poles.

\textbf{Ans:} See Example 8.13 for 2.1 and Section 8.4.3. for 2.2.

3. By using the Taylor series of \(\cos(z) \) and \(\sin(z) \) around \(z = 0 \), compute the first few terms of the Laurent expansion of \(\cot(z) \) around \(z = 0 \).

\textbf{Ans:} See Example 8.17.

4. Suppose \(f(z) \) is analytic in the region \(A \) except for a set of isolated singularities. Suppose \(C \) is a simple closed curve in \(A \) that doesn't go through any of the singularities of \(f \) and is oriented counterclockwise.

4.1. Suppose that there is only one isolated singularity inside \(C \) at the point \(z_1 \). By using the extended version of Cauchy's theorem, show that \(\int_C \frac{f(z)dz}{z-z_1} = 2 \pi i \text{Res}(f, z_1) \).

4.2. Suppose now that there are two isolated singularities inside \(C \) at the points \(z_1 \) and \(z_2 \). Again, by using the extended version of Cauchy's theorem, show that \(\int_C \frac{f(z)dz}{z-z_1} = 2 \pi i \left(\text{Res}(f, z_1) + \text{Res}(f, z_2) \right) \).

4.3. Generalize the previous part to show that

\[\int_C f(z)dz = 2 \pi i \sum \text{residues of } f \text{ inside } C. \]

This is Cauchy's residue theorem.
18.04 Complex Variables with Applications
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.