Joint Distributions, Independence Covariance and Correlation
18.05 Spring 2014

<table>
<thead>
<tr>
<th>X \ Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>2</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>3</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>4</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>5</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
</tbody>
</table>
Joint Distributions

X and Y are jointly distributed random variables.

Discrete: Probability mass function (pmf):

\[p(x_i, y_j) \]

Continuous: probability density function (pdf):

\[f(x, y) \]

Both: cumulative distribution function (cdf):

\[F(x, y) = P(X \leq x, Y \leq y) \]
Discrete joint pmf: example 1

Roll two dice: \(X = \# \) on first die, \(Y = \# \) on second die

\(X \) takes values in 1, 2, \ldots, 6, \(Y \) takes values in 1, 2, \ldots, 6

Joint probability table:

<table>
<thead>
<tr>
<th>(X \backslash Y)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>2</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>3</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>4</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>5</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
</tbody>
</table>

pmf: \(p(i,j) = 1/36 \) for any \(i \) and \(j \) between 1 and 6.
Roll two dice: $X = \#$ on first die, $T = \text{total on both dice}$

<table>
<thead>
<tr>
<th>$X \backslash T$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
</tbody>
</table>
Continuous joint distributions

- X takes values in $[a, b]$, Y takes values in $[c, d]$.
- (X, Y) takes values in $[a, b] \times [c, d]$.
- Joint probability density function (pdf) $f(x, y)$

$f(x, y) \, dx \, dy$ is the probability of being in the small square.
Properties of the joint pmf and pdf

Discrete case: probability mass function (pmf)
1. $0 \leq p(x_i, y_j) \leq 1$
2. Total probability is 1.

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) = 1
$$

Continuous case: probability density function (pdf)
1. $0 \leq f(x, y)$
2. Total probability is 1.

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) \, dx \, dy = 1
$$

Note: $f(x, y)$ can be greater than 1: it is a density not a probability.
Example: discrete events
Roll two dice: \(X = \# \) on first die, \(Y = \# \) on second die.
Consider the event: \(A = ‘Y − X ≥ 2’ \)
Describe the event \(A \) and find its probability.

answer: We can describe \(A \) as a set of \((X, Y)\) pairs:

\[
A = \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 6)\}.
\]

Or we can visualize it by shading the table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>2</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>3</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>4</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>5</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
</tbody>
</table>

\[P(A) = \text{sum of probabilities in shaded cells} = \frac{10}{36}. \]
Example: continuous events

Suppose \((X, Y)\) takes values in \([0, 1] \times [0, 1]\).

Uniform density \(f(x, y) = 1\).

Visualize the event ‘\(X > Y\)’ and find its probability.

answer:

The event takes up half the square. Since the density is uniform this is half the probability. That is, \(P(X > Y) = 0.5\)
Cumulative distribution function

\[F(x, y) = P(X \leq x, Y \leq y) = \int_{c}^{y} \int_{a}^{x} f(u, v) \, du \, dv. \]

\[f(x, y) = \frac{\partial^2 F}{\partial x \partial y}(x, y). \]

Properties

1. \(F(x, y) \) is non-decreasing. That is, as \(x \) or \(y \) increases \(F(x, y) \) increases or remains constant.

2. \(F(x, y) = 0 \) at the lower left of its range.
 If the lower left is \((−\infty, −\infty)\) then this means
 \[\lim_{(x,y) \to (−\infty,−\infty)} F(x, y) = 0. \]

3. \(F(x, y) = 1 \) at the upper right of its range.
Roll two dice: $X = \#$ on first die, $T =$ total on both dice.

The marginal pmf of X is found by summing the rows. The marginal pmf of T is found by summing the columns.

For continuous distributions the marginal pdf $f_X(x)$ is found by integrating out the y. Likewise for $f_Y(y)$.
Board question

Suppose X and Y are random variables and

1. (X, Y) takes values in $[0, 1] \times [0, 1]$.
2. the pdf is $\frac{3}{2}(x^2 + y^2)$.

1. Show $f(x, y)$ is a valid pdf.
2. Visualize the event $A = \{X > 0.3 \text{ and } Y > 0.5\}$. Find its probability.
3. Find the cdf $F(x, y)$.
4. Find the marginal pdf $f_X(x)$. Use this to find $P(X < 0.5)$.
5. Use the cdf $F(x, y)$ to find the marginal cdf $F_X(x)$ and $P(X < 0.5)$.
6. See next slide
6. (New scenario) From the following table compute \(F(3.5, 4) \).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>2</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>3</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>4</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>5</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
</tr>
</tbody>
</table>

answer: See next slide
Solution

answer: 1. Validity: Clearly $f(x, y)$ is positive. Next we must show that total probability $= 1$:

$$
\int_0^1 \int_0^1 \frac{3}{2}(x^2 + y^2) \, dx \, dy = \int_0^1 \left[\frac{1}{2}x^3 + \frac{3}{2}xy^2 \right]_0^1 \, dy = \int_0^1 \frac{1}{2} + \frac{3}{2}y^2 \, dy = 1.
$$

2. Here’s the visualization

The pdf is not constant so we must compute an integral

$$
P(A) = \int_{.3}^{1} \int_{.5}^{1} \frac{3}{2}(x^2 + y^2) \, dy \, dx = \int_{.3}^{1} \left[\frac{3}{2}x^2y + \frac{1}{2}y^3 \right]_{.5}^{1} \, dx
$$

(continued)
Solutions 2, 3, 4, 5

2. (continued) \[= \int_{.3}^{1} \frac{3x^2}{4} + \frac{7}{16} \, dx = 0.5495 \]

3. \[F(x, y) = \int_{0}^{y} \int_{0}^{x} \frac{3}{2}(u^2 + v^2) \, du \, dv = \frac{x^3 y}{2} + \frac{xy^3}{2}. \]

4. \[f_X(x) = \int_{0}^{1} \frac{3}{2}(x^2 + y^2) \, dy = \left[\frac{3}{2}x^2y + \frac{y^3}{2} \right]_{0}^{1} = \frac{3}{2}x^2 + \frac{1}{2} \]

\[P(X < .5) = \int_{0}^{.5} f_X(x) \, dx = \int_{0}^{.5} \frac{3}{2}x^2 + \frac{1}{2} \, dx = \left[\frac{1}{2}x^3 + \frac{1}{2}x \right]_{0}^{.5} = \frac{5}{16}. \]

5. To find the marginal cdf \(F_X(x) \) we simply take \(y \) to be the top of the \(y \)-range and evaluate \(F \): \[F_X(x) = F(x, 1) = \frac{1}{2}(x^3 + x). \]

Therefore \[P(X < .5) = F(.5) = \frac{1}{2} \left(\frac{1}{8} + \frac{1}{2} \right) = \frac{5}{16}. \]

6. On next slide
Solution 6

6. \(F(3.5, 4) = P(X \leq 3.5, Y \leq 4) \).

\[
\begin{array}{|c|ccccccc|}
\hline
X \backslash Y & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 \\
2 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 \\
3 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 \\
4 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 \\
5 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 \\
6 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 & 1/36 \\
\hline
\end{array}
\]

Add the probability in the shaded squares: \(F(3.5, 4) = 12/36 = 1/3 \).
Independence

Events A and B are independent if

$$P(A \cap B) = P(A)P(B).$$

Random variables X and Y are independent if

$$F(x, y) = F_X(x)F_Y(y).$$

Discrete random variables X and Y are independent if

$$p(x_i, y_j) = p_X(x_i)p_Y(y_j).$$

Continuous random variables X and Y are independent if

$$f(x, y) = f_X(x)f_Y(y).$$
Concept question: independence I

Roll two dice: $X =$ value on first, $Y =$ value on second

<table>
<thead>
<tr>
<th>$X \backslash Y$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>$p(x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>3</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>4</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>5</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
</tbody>
</table>

| $p(y_j)$ | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1 |

Are X and Y independent? 1. Yes 2. No

answer: 1. Yes. Every cell probability is the product of the marginal probabilities.
Concept question: independence II

Roll two dice: \(X = \) value on first, \(T = \) sum

<table>
<thead>
<tr>
<th>(X \mid T)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>(p(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/36</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Are \(X \) and \(Y \) independent? 1. Yes 2. No

answer: 2. No. The cells with probability zero are clearly not the product of the marginal probabilities.
Concept Question

Among the following pdf’s which are independent? (Each of the ranges is a rectangle chosen so that \(\int \int f(x, y) \, dx \, dy = 1 \).)

(i) \(f(x, y) = 4x^2 y^3 \).

(ii) \(f(x, y) = \frac{1}{2}(x^3 y + xy^3) \).

(iii) \(f(x, y) = 6e^{-3x-2y} \)

Put a 1 for independent and a 0 for not-independent.

(a) 111 (b) 110 (c) 101 (d) 100

(e) 011 (f) 010 (g) 001 (h) 000

answer: (c). Explanation on next slide.
Solution

(i) **Independent.** The variables can be separated: the marginal densities are \(f_X(x) = ax^2 \) and \(f_Y(y) = by^3 \) for some constants \(a \) and \(b \) with \(ab = 4 \).

(ii) **Not independent.** \(X \) and \(Y \) are not independent because there is no way to factor \(f(x, y) \) into a product \(f_X(x) f_Y(y) \).

(iii) **Independent.** The variables can be separated: the marginal densities are \(f_X(x) = ae^{-3x} \) and \(f_Y(y) = be^{-2y} \) for some constants \(a \) and \(b \) with \(ab = 6 \).
Covariance

Measures the degree to which two random variables vary together, e.g. height and weight of people.

X, Y random variables with means μ_X and μ_Y

$$\text{Cov}(X, Y) = E((X - \mu_X)(Y - \mu_Y)).$$
Properties of covariance

Properties

1. \(\text{Cov}(aX + b, cY + d) = ac \text{Cov}(X, Y) \) for constants \(a, b, c, d \).
2. \(\text{Cov}(X_1 + X_2, Y) = \text{Cov}(X_1, Y) + \text{Cov}(X_2, Y) \).
3. \(\text{Cov}(X, X) = \text{Var}(X) \)
4. \(\text{Cov}(X, Y) = E(XY) - \mu_X \mu_Y \).
5. If \(X \) and \(Y \) are independent then \(\text{Cov}(X, Y) = 0 \).
6. **Warning:** The converse is not true, if covariance is 0 the variables might not be independent.
Concept question

Suppose we have the following joint probability table.

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>(p(y_j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>1</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
<td>1/2</td>
</tr>
</tbody>
</table>

At your table work out the covariance \(\text{Cov}(X, Y) \).

Because the covariance is 0 we know that \(X \) and \(Y \) are independent

1. True
2. False

Key point: covariance measures the linear relationship between \(X \) and \(Y \). It can completely miss a quadratic or higher order relationship.
Board question: computing covariance

Flip a fair coin 12 times.
Let $X =$ number of heads in the first 7 flips
Let $Y =$ number of heads on the last 7 flips.
Compute Cov(X, Y),
Solution

Use the properties of covariance.

\(X_i\) = the number of heads on the \(i^{th}\) flip. (So \(X_i \sim \text{Bernoulli}(0.5)\).)

\[X = X_1 + X_2 + \ldots + X_7 \quad \text{and} \quad Y = X_6 + X_7 + \ldots + X_{12}.\]

We know \(\text{Var}(X_i) = 1/4\). Therefore using Property 2 (linearity) of covariance

\[
\text{Cov}(X, Y) = \text{Cov}(X_1 + X_2 + \ldots + X_7, X_6 + X_7 + \ldots + X_{12})
= \text{Cov}(X_1, X_6) + \text{Cov}(X_1, X_7) + \text{Cov}(X_1, X_8) + \ldots + \text{Cov}(X_7, X_{12})
\]

Since the different tosses are independent we know

\[
\text{Cov}(X_1, X_6) = 0, \quad \text{Cov}(X_1, X_7) = 0, \quad \text{Cov}(X_1, X_8) = 0, \ldots
\]

Looking at the expression for \(\text{Cov}(X, Y)\) there are only two non-zero terms

\[
\text{Cov}(X, Y) = \text{Cov}(X_6, X_6) + \text{Cov}(X_7, X_7) = \text{Var}(X_6) + \text{Var}(X_7) = \frac{1}{2}.
\]
Correlation

Like covariance, but removes scale.
The *correlation coefficient* between X and Y is defined by

$$\text{Cor}(X, Y) = \rho = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}.$$

Properties:
1. ρ is the covariance of the standardized versions of X and Y.
2. ρ is *dimensionless* (it’s a ratio).
3. $-1 \leq \rho \leq 1$. $\rho = 1$ if and only if $Y = aX + b$ with $a > 0$ and $\rho = -1$ if and only if $Y = aX + b$ with $a < 0$.
Real-life correlations

- Over time, amount of Ice cream consumption is correlated with number of pool drownings.
- In 1685 (and today) being a student is the most dangerous profession.
- In 90% of bar fights ending in a death the person who started the fight died.
- Hormone replacement therapy (HRT) is correlated with a lower rate of coronary heart disease (CHD).

Discussion is on the next slides.
Real-life correlations discussion

- Ice cream does not cause drownings. Both are correlated with summer weather.

- In a study in 1685 of the ages and professions of deceased men, it was found that the profession with the lowest average age of death was “student.” But, being a student does not cause you to die at an early age. Being a student means you are young. This is what makes the average of those that die so low.

- A study of fights in bars in which someone was killed found that, in 90% of the cases, the person who started the fight was the one who died.

 Of course, it’s the person who survived telling the story.

Continued on next slide
In a widely studied example, numerous epidemiological studies showed that women who were taking combined hormone replacement therapy (HRT) also had a lower-than-average incidence of coronary heart disease (CHD), leading doctors to propose that HRT was protective against CHD. But randomized controlled trials showed that HRT caused a small but statistically significant increase in risk of CHD. Re-analysis of the data from the epidemiological studies showed that women undertaking HRT were more likely to be from higher socio-economic groups (ABC1), with better-than-average diet and exercise regimens. The use of HRT and decreased incidence of coronary heart disease were coincident effects of a common cause (i.e. the benefits associated with a higher socioeconomic status), rather than cause and effect, as had been supposed.
Correlation is not causation

Edward Tufte: ”Empirically observed covariation is a necessary but not sufficient condition for causality.”
Overlapping sums of uniform random variables

We made two random variables X and Y from overlapping sums of uniform random variables.

For example:

$$X = X_1 + X_2 + X_3 + X_4 + X_5$$
$$Y = X_3 + X_4 + X_5 + X_6 + X_7$$

These are sums of 5 of the X_i with 3 in common.

If we sum r of the X_i with s in common we name it (r, s).

Below are a series of scatterplots produced using R.
Scatter plots

(1, 0) cor=0.00, sample_cor = -0.07

(2, 1) cor=0.50, sample_cor = 0.48

(5, 1) cor=0.20, sample_cor = 0.21

(10, 8) cor=0.80, sample_cor = 0.81
Concept question

Toss a fair coin $2n + 1$ times. Let X be the number of heads on the first $n + 1$ tosses and Y the number on the last $n + 1$ tosses.

If $n = 1000$ then $\text{Cov}(X, Y)$ is:

(a) 0 (b) 1/4 (c) 1/2 (d) 1

(e) More than 1 (f) tiny but not 0

answer: 2. 1/4. This is computed in the answer to the next table question.
Board question

Toss a fair coin $2n + 1$ times. Let X be the number of heads on the first $n + 1$ tosses and Y the number on the last $n + 1$ tosses.

Compute $\text{Cov}(X, Y)$ and $\text{Cor}(X, Y)$. As usual let $X_i =$ the number of heads on the i^{th} flip, i.e. 0 or 1. Then

$$X = \sum_{1}^{n+1} X_i, \quad Y = \sum_{n+1}^{2n+1} X_i$$

X is the sum of $n + 1$ independent Bernoulli$(1/2)$ random variables, so

$$\mu_X = E(X) = \frac{n + 1}{2}, \quad \text{and} \quad \text{Var}(X) = \frac{n + 1}{4}.$$

Likewise, $\mu_Y = E(Y) = \frac{n + 1}{2}$, and $\text{Var}(Y) = \frac{n + 1}{4}$.

Continued on next slide.
Solution continued

Now,

\[
\text{Cov}(X, Y) = \text{Cov}\left(\sum_{i=1}^{n+1} X_i, \sum_{j=n+1}^{2n+1} X_j \right) = \sum_{i=1}^{n+1} \sum_{j=n+1}^{2n+1} \text{Cov}(X_i, X_j).
\]

Because the \(X_i \) are independent the only non-zero term in the above sum is \(\text{Cov}(X_{n+1}X_{n+1}) = \text{Var}(X_{n+1}) = \frac{1}{4} \) Therefore,

\[
\text{Cov}(X, Y) = \frac{1}{4}.
\]

We get the correlation by dividing by the standard deviations.

\[
\text{Cor}(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{1/4}{(n + 1)/4} = \frac{1}{n + 1}.
\]

This makes sense: as \(n \) increases the correlation should decrease since the contribution of the one flip they have in common becomes less important.
18.05 Introduction to Probability and Statistics
Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.