Exam 2 Practice Questions – solutions, 18.05, Spring 2014

1 Topics

- Statistics: data, MLE (pset 5)
- Bayesian inference: prior, likelihood, posterior, predictive probability, probability intervals (psets 5, 6)
- Frequentist inference: NHST (psets 7, 8)

2 Using the probability tables

You should become familiar with the probability tables at the end of these notes.

1. (a) (i) The table gives this value as $P(Z < 1.5) = 0.9332$.
 (ii) This is the complement of the answer in (i): $P(Z > 1.5) = 1 - 0.9332 = 0.0668$. Or by symmetry we could use the table for -1.5.
 (iii) We want $P(Z < 1.5) - P(Z < -1.5) = P(Z < 1.5) - P(Z > 1.5)$. This is the difference of the answers in (i) and (ii): 0.8664.
 (iv) A rough estimate is the average of $P(Z < 1.6)$ and $P(Z < 1.65)$. That is, $P(Z < 1.6) + P(Z < 1.65) \approx \frac{0.9452 + 0.9505}{2} = 0.9479$.

(b) (i) We are looking for the table entry with probability 0.95. This is between the table entries for $z = 1.65$ and $z = 1.60$ and very close to that of $z = 1.65$. Answer: the region is $[1.64, \infty)$. (R gives the ‘exact’ lower limit as 1.644854.)
 (ii) We want the table entry with probability 0.1. The table probabilities for $z = -1.25$ and $z = -1.30$ are 0.1056 and 0.0968. Since 0.1 is about 1/2 way from the first to the second we take the left critical value as -1.275. Our region is $(-\infty, -1.275) \cup (1.275, \infty)$.
 (R gives $\text{qnorm}(0.1, 0, 1) = -1.2816$.)
 (iii) This is the range from $q_{0.25}$ to $q_{0.75}$. With the table we estimate $q_{0.25}$ is about 1/2 of the way from -0.65 to -0.70, i.e. ≈ -0.675. So, the range is $[-0.675, 0.675]$.

2. (a) (i) The question asks to find which p-value goes with $t = 1.6$ when $df = 3$. We look in the $df = 3$ row of the table and find 1.64 goes with $p = 0.100$ So $P(T > 1.6 \mid df = 3) \approx 0.1$. (The true value is a little bit greater.)
 (ii) $P(T < 1.6 \mid df = 3) = 1 - P(T > 1.6 \mid df = 3) \approx 0.9$.
 (iii) Using the $df = 49$ row of the t-table we find $P(T > 1.68 \mid df = 49) = 0.05$. Now, by symmetry $P(T < -1.68 \mid df = 49) = 0.05$ and $P(-1.68 < T < 1.68 \mid df = 49) = 0.9$.

(iv) Using the \(df = 49 \) row of the \(t \)-table we find \(P(T > 1.68 \mid df = 49) = 0.05 \) and \(P(T > 1.30 \mid df = 49) = 0.1 \). We can do a rough interpolation: \(P(T > 1.6 \mid df = 49) \approx 0.06 \).

Now, by symmetry \(P(T < -1.6 \mid df = 49) \approx 0.06 \) and \(P(-1.6 < T < 1.6 \mid df = 49) \approx 0.88 \). (R gives 0.8839727.)

(b) (i) This is a straightforward lookup: The \(p = 0.05, df = 8 \) entry is 1.86.

(ii) For a two-sided rejection region we need 0.1 probability in each tail. The critical value at \(p = 0.1, df = 16 \) is 1.34. So (by symmetry) the rejection region is
\[(-\infty, -1.34) \cup (1.34, \infty). \]

(iii) This is the range from \(q_{0.25} \) to \(q_{0.75} \), i.e. from critical values \(t_{0.75} \) to \(t_{0.25} \). The table only gives critical for 0.2 and 0.3 For \(df = 20 \) these are 0.86 and 0.53. We average these to estimate the 0.25 critical value as 0.7. Answer: the middle 50% of probability is approximately between \(t \)-values -0.7 and 0.7. (If we took into account the bell shape of the \(t \)-distribution we would estimate the 0.25 critical value as slightly closer to 0.53 than 0.86. Indeed R gives the value 0.687.)

3. (a) (i) Looking in the \(df = 3 \) row of the chi-square table we see that 1.6 is about 1/5 of the way between the values for \(p = 0.7 \) and \(p = 0.5 \). So we approximate \(P(X^2 > 1.6) \approx 0.66 \). (The true value is 0.6594.)

(ii) Looking in the \(df = 16 \) row of the chi-square table we see that 20 is about 1/4 of the way between the values for \(p = 0.2 \) and \(p = 0.3 \). We estimate \(P(X^2 > 20) = 0.25 \). (The true value is 0.220)

(b) (i) This is in the table in the \(df = 8 \) row under \(p = 0.05 \). Answer: 15.51

(ii) We want the critical values for \(p = 0.9 \) and \(p = 0.1 \) from the \(df = 16 \) row of the table.
\[[0, 9.31] \cup [23.54, \infty). \]

3 Data

4. Sample mean \(20/5 = 4 \).

Sample variance \(= \frac{1^2 + (-3)^2 + (-1)^2 + (-1)^2 + 4^2}{5 - 1} = 7 \).

Sample standard deviation \(= \sqrt{7} \).

Sample median = 3.

5. The first quartile is the value where 25% of the data is below it. We have 16 data points so this is between the 4th and 5th points, i.e. between 2 and 3. It is reasonable to take the midpoint and say 2.5.

The second quartile is between 8 and 12, we say 10.

The third quartile is 14.
4 MLE

6. (a) The likelihood function is
\[p(\text{data}|\theta) = \binom{100}{62} \theta^{62}(1 - \theta)^{38} = c\theta^{62}(1 - \theta)^{38}. \]

To find the MLE we find the derivative of the log-likelihood and set it to 0.
\[\ln(p(\text{data}|\theta)) = \ln(c) + 62 \ln(\theta) + 38 \ln(1 - \theta). \]
\[\frac{d \ln(p(\text{data}|\theta))}{d\theta} = \frac{62}{\theta} - \frac{38}{1 - \theta} = 0. \]
The algebra leads to the MLE \[\theta = 62/100. \]

(b) The computation is identical to part (a). The likelihood function is
\[p(\text{data}|\theta) = \binom{n}{k} \theta^k(1 - \theta)^{n-k} = c\theta^k(1 - \theta)^{n-k}. \]

To find the MLE we set the derivative of the log-likelihood and set it to 0.
\[\ln(p(\text{data}|\theta)) = \ln(c) + k \ln(\theta) + (n - k) \ln(1 - \theta). \]
\[\frac{d \ln(p(\text{data}|\theta))}{d\theta} = \frac{k}{\theta} - \frac{n - k}{1 - \theta} = 0. \]
The algebra leads to the MLE \[\theta = k/n. \]

7. If \(N < \max(y_i) \) then the likelihood \(p(y_1, \ldots, y_n|N) = 0 \). So the likelihood function is
\[p(y_1, \ldots, y_n|N) = \begin{cases} 0 & \text{if } N < \max(y_i) \\ \left(\frac{1}{N}\right)^n & \text{if } N \geq \max(y_i) \end{cases} \]

This is maximized when \(N \) is as small as possible. Since \(N \geq \max(y_i) \) the MLE is \[N = \max(y_i). \]

8. The pdf of \(\exp(\lambda) \) is \(p(x|\lambda) = \lambda e^{-\lambda x} \). So the likelihood and log-likelihood functions are
\[p(\text{data}|\lambda) = \lambda^ne^{-\lambda(x_1 + \cdots + x_n)}, \quad \ln(p(\text{data}|\lambda)) = n \ln(\lambda) - \lambda \sum x_i. \]

Taking a derivative with respect to \(\lambda \) and setting it equal to 0:
\[\frac{d \ln(p(\text{data}|\lambda))}{d\lambda} = \frac{n}{\lambda} - \sum x_i = 0 \quad \Rightarrow \quad \frac{1}{\lambda} = \frac{\sum x_i}{n} = \bar{x}. \]

So the MLE is \[\lambda = 1/\bar{x}. \]

9. \[P(x_i|a) = \left(1 - \frac{1}{a}\right)^{x_i-1} \frac{1}{a} = \left(\frac{a - 1}{a}\right)^{x_i-1} \frac{1}{a}. \]
So, the likelihood function is

\[P(\text{data}|a) = \left(\frac{a-1}{a}\right)^{\sum x_i - n} \left(\frac{1}{a}\right)^n \]

The log likelihood is

\[\ln(P(\text{data}|a)) = \left(\sum x_i - n\right) \left(\ln(a-1) - \ln(a)\right) - n \ln(a). \]

Taking the derivative

\[\frac{d \ln(P(\text{data}|a))}{da} = \left(\sum x_i - n\right) \left(\frac{1}{a-1} - \frac{1}{a}\right) - \frac{n}{a} = 0 \Rightarrow \frac{\sum x_i}{n} = a. \]

The maximum likelihood estimate is \(\hat{a} = \bar{x} \).

10. If there are \(n \) students in the room then for the data 1, 3, 7 (occurring in any order) the likelihood is

\[p(\text{data} \mid n) = \begin{cases}
0 & \text{for } n < 7 \\
\frac{1}{n} \binom{n}{3} = \frac{3!}{n(n-1)(n-2)} & \text{for } n \geq 7
\end{cases} \]

Maximizing this does not require calculus. It clearly has a maximum when \(n \) is as small as possible. Answer: \(n = 7 \).

5 Bayesian updating: discrete prior, discrete likelihood

11. This is a Bayes’ theorem problem. The likelihoods are

\[\begin{align*}
P(\text{same sex} \mid \text{identical}) &= 1 \\
P(\text{different sex} \mid \text{identical}) &= 0 \\
P(\text{same sex} \mid \text{fraternal}) &= \frac{1}{2} \\
P(\text{different sex} \mid \text{fraternal}) &= \frac{1}{2}
\end{align*} \]

The data is ‘the twins are the same sex’. We find the answer with an update table

<table>
<thead>
<tr>
<th>hyp.</th>
<th>prior</th>
<th>likelihood</th>
<th>unnorm. post.</th>
<th>posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>identical</td>
<td>1/3</td>
<td>1</td>
<td>1/3</td>
<td>1/2</td>
</tr>
<tr>
<td>fraternal</td>
<td>2/3</td>
<td>1/2</td>
<td>1/3</td>
<td>1/2</td>
</tr>
<tr>
<td>Tot.</td>
<td>1</td>
<td>2/3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

So \(P(\text{identical} \mid \text{same sex}) = 1/2 \).

12. (a) The data is 5. Let \(H_n \) be the hypothesis the die is \(n \)-sided. Here is the update table.

<table>
<thead>
<tr>
<th>hyp.</th>
<th>prior</th>
<th>likelihood</th>
<th>unnorm. post.</th>
<th>posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_4)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(H_6)</td>
<td>2</td>
<td>((1/6)^2)</td>
<td>2/36</td>
<td>0.243457</td>
</tr>
<tr>
<td>(H_8)</td>
<td>10</td>
<td>((1/8)^2)</td>
<td>10/64</td>
<td>0.684723</td>
</tr>
<tr>
<td>(H_{12})</td>
<td>2</td>
<td>((1/12)^2)</td>
<td>2/144</td>
<td>0.060864</td>
</tr>
<tr>
<td>(H_{20})</td>
<td>1</td>
<td>((1/20)^2)</td>
<td>1/400</td>
<td>0.010956</td>
</tr>
<tr>
<td>Tot.</td>
<td>16</td>
<td>0.22819</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Exam 2 Practice 2, Spring 2014

So \(P(H_8|\text{data}) = 0.685 \).

(b) We are asked for posterior predictive probabilities. Let \(x \) be the value of the next roll. We have to compute the total probability

\[
p(x|\text{data}) = \sum p(x|H)p(H|\text{data}) = \sum \text{likelihood} \times \text{posterior}.
\]

The sum is over all hypotheses. We can organize the calculation in a table where we multiply the posterior column by the appropriate likelihood column. The total posterior predictive probability is the sum of the product column.

<table>
<thead>
<tr>
<th>hyp. to data</th>
<th>posterior to (i)</th>
<th>likelihood to (i)</th>
<th>likelihood to (ii)</th>
<th>post. to (i)</th>
<th>post. to (ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(H_6)</td>
<td>0.243457</td>
<td>1/6</td>
<td>0.04058</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(H_8)</td>
<td>0.684723</td>
<td>1/8</td>
<td>0.08559</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(H_{12})</td>
<td>0.060864</td>
<td>1/12</td>
<td>0.00507</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(H_{20})</td>
<td>0.010956</td>
<td>1/20</td>
<td>0.00055</td>
<td>1/20</td>
<td>0.00055</td>
</tr>
<tr>
<td>Tot.</td>
<td>0.22819</td>
<td></td>
<td>0.13179</td>
<td>0.00055</td>
<td></td>
</tr>
</tbody>
</table>

So, (i) \(p(x = 5|\text{data}) = 0.132 \) and (ii) \(p(x = 15|\text{data}) = 0.00055 \).

13. (a) Solution to (a) is with part (b).

(b) Let \(\theta \) be the probability of the selected coin landing on heads. Given \(\theta \), we know that the number of heads observed before the first tails, \(X \), is a \(\text{geo}(\theta) \) random variable. We have updating table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta = 1/2)</td>
<td>1/2</td>
<td>((1/2)^{(1/2)})</td>
<td>(1/2^{\theta})</td>
<td>16/43</td>
</tr>
<tr>
<td>(\theta = 3/4)</td>
<td>1/2</td>
<td>((3/4)^{(3/4)})</td>
<td>(3^{\theta} \cdot 4^{\theta})</td>
<td>27/43</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>–</td>
<td>43/256</td>
<td>1</td>
</tr>
</tbody>
</table>

The prior odds for the fair coin are 1, the posterior odds are 16/27. The prior predictive probability of heads is \(0.5 \cdot \frac{1}{2} + 0.75 \cdot \frac{1}{2} \). The posterior predictive probability of heads is \(0.5 \cdot \frac{16}{43} + 0.75 \cdot \frac{27}{43} \).

6 Bayesian Updating: continuous prior, discrete likelihood

14. (a) \(x_1 \sim \text{Bin}(10, \theta) \).

(b) We have prior:

\[
f(\theta) = c_1 \theta(1 - \theta)
\]

and likelihood:

\[
p(x_1 = 6 | \theta) = c_2 \theta^6 (1 - \theta)^4,
\]

where \(c_2 = \binom{10}{6} \).

The unnormalized posterior is \(f(\theta)p(x_1|\theta) = c_1 c_2 \theta^{7} (1 - \theta)^{5} \). So the normalized posterior is

\[
f(\theta|x_1) = c_3 \theta^{7} (1 - \theta)^{5}
\]
Since the posterior has the form of a beta(8, 6) distribution it must be a beta(8, 6) distribution. We can look up the normalizing coefficient $c_3 = \frac{13!}{7!5!}$.

(c) The 50% interval is

$[q\text{beta}(0.25, 8, 6), q\text{beta}(0.75, 8, 6)] = [0.48330, 0.66319]$

The 90% interval is

$[q\text{beta}(0.05, 8, 6), q\text{beta}(0.95, 8, 6)] = [0.35480, 0.77604]$

(d) If the majority prefer Bayes then $\theta > 0.5$. Since the 50% interval includes $\theta < 0.5$ and the 90% interval covers a lot of $\theta < 0.5$ we don’t have a strong case that $\theta > 0.5$.

As a further test we compute $P(\theta < 0.5|x_1) = \text{pbeta}(0.5, 8, 6) = 0.29053$. So there is still a 29% posterior probability that the majority prefers frequentist statistics.

(e) Let x_2 be the result of the second poll. We want $p(x_2 > 5|x_1)$. We can compute this using the law of total probability:

$$p(x_2 > 5|x_1) = \int_0^1 p(x_2 > 5|\theta)p(\theta|x_1) \, d\theta.$$

The two factors in the integral are:

$$p(x_2 > 5|\theta) = \binom{10}{6} \theta^6(1-\theta)^4 + \binom{10}{7} \theta^7(1-\theta)^3 + \binom{10}{8} \theta^8(1-\theta)^2$$

$$+ \binom{10}{9} \theta^9(1-\theta)^1 + \binom{10}{10} \theta^{10}(1-\theta)^0$$

$$p(\theta|x_1) = \frac{13!}{7!5!} \theta^7(1-\theta)^5$$

This can be computed exactly or numerically in R using the `integrate()` function. The answer is $P(x_2 > 5|x_1 = 6) = 0.5521$.

7 Bayesian Updating: discrete prior, continuous likelihood

15. For a fixed θ the likelihood is

$$f(x|\theta) = \begin{cases}
1/\theta & \text{for } x \leq \theta \\
0 & \text{for } x \geq \theta
\end{cases}$$

If Alice arrived 10 minutes late, we have table

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Prior</th>
<th>Likelihood for $x = 1/6$</th>
<th>Unnorm. Post</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = 1/4$</td>
<td>1/2</td>
<td>4</td>
<td>2</td>
<td>3/4</td>
</tr>
<tr>
<td>$\theta = 3/4$</td>
<td>1/2</td>
<td>4/3</td>
<td>2/3</td>
<td>1/4</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>–</td>
<td>8/3</td>
<td>1</td>
</tr>
</tbody>
</table>

In this case the most likely value of θ is 1/4.

If Alice arrived 30 minutes late, we have table

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Prior</th>
<th>Likelihood for $x = 1/2$</th>
<th>Unnorm. Post</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = 1/4$</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\theta = 3/4$</td>
<td>1/2</td>
<td>4/3</td>
<td>2/3</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>–</td>
<td>2/3</td>
<td>1</td>
</tr>
</tbody>
</table>
In this case the most likely value of \(\theta \) is 3/4.

8 Bayesian Updating: continuous prior, continuous likelihood

16. (a) We have \(\mu_{\text{prior}} = 9, \sigma_{\text{prior}}^2 = 1 \) and \(\sigma^2 = 10^{-4} \). The normal-normal updating formulas are

\[
a = \frac{1}{\sigma_{\text{prior}}^2}, \quad b = \frac{n}{\sigma^2}, \quad \mu_{\text{post}} = \frac{a\mu_{\text{prior}} + b\bar{x}}{a + b}, \quad \sigma_{\text{post}}^2 = \frac{1}{a + b}.
\]

So we compute \(a = 1/1, b = 10000, \sigma_{\text{post}}^2 = 1/(a + b) = 1/10001 \) and

\[
\mu_{\text{post}} = \frac{a\mu_{\text{prior}} + b\bar{x}}{a + b} = \frac{10000 \cdot 9}{10001} \approx 9.990
\]

So we have posterior distribution \(f(\theta|x = 10) \sim N(9.99990, 0.0099) \).

(b) We have \(\sigma_{\text{prior}}^2 = 1 \) and \(\sigma^2 = 10^{-4} \). The posterior variance of \(\theta \) given observations \(x_1, \ldots, x_n \) is given by

\[
\frac{1}{\sigma_{\text{prior}}^2 + \frac{n}{\sigma^2}} = \frac{1}{1 + n \cdot 10^4}
\]

We wish to find \(n \) such that the above quantity is less than \(10^{-6} \). It is not hard to see that \(n = 100 \) is the smallest value such that this is true.

17. We have likelihood function

\[
f(x_1, \ldots, x_5|\lambda) = \prod_{i=1}^{5} \lambda e^{-\lambda x_i} = \lambda^5 e^{-\lambda(x_1+x_2+\cdots+x_5)} = \lambda^5 e^{-2\lambda}
\]

So our posterior density is proportional to:

\[
f(\lambda)f(x_1, \ldots, x_5|\lambda) \propto \lambda^6 e^{-3\lambda}
\]

The hint allows us to compute the normalizing factor. (Or we could recognize this as the pdf of a Gamma random variable with parameters 10 and 3. Thus, the density is

\[
f(\lambda|x_1, \ldots, x_5) = \frac{3^{10}}{9!} \lambda^6 e^{-3\lambda}.
\]

18. (a) Let \(X \) be a random decay distance.

\[
Z(\lambda) = P(\text{detection} | \lambda) = P(1 \leq X \leq 20 | \lambda) = \int_1^{20} \lambda e^{-\lambda x} \, dx = \left[e^{-\lambda} - e^{-20\lambda} \right].
\]
(b) Fully specifying the likelihood (remember detection only occurs for \(1 \leq x \leq 20\)).

\[
\text{likelihood } = f(x \mid \lambda, \text{detected}) = \frac{f(x \text{ and detected} \mid \lambda)}{f(\text{detected} \mid \lambda)} = \begin{cases} \frac{\lambda^x e^{-\lambda} x}{Z(\lambda)} & \text{for } 1 \leq x \leq 20 \\ 0 & \text{otherwise} \end{cases}
\]

(c) Let \(\Lambda\) be the random variable for \(\lambda\). Let \(X = 1/\Lambda\) be the random variable for the mean decay distance.

We are given that \(X\bar{\text{bar}}\) is uniform on \([5, 30]\) \(\Rightarrow f_{X}(x) = 1/25\).

First we find the pdf for \(\lambda\), \(f_{\Lambda}(\lambda)\), by finding and then differentiating \(F_{\Lambda}(\lambda)\).

\[
F_{\Lambda}(\lambda) = P(\Lambda < \lambda) = P\left(\frac{1}{\lambda} > \frac{1}{\Lambda}\right) = P\left(X > \frac{1}{\lambda}\right) = \begin{cases} 0 & \text{for } 1/\lambda > 30 \\ \frac{30 - 1/\lambda}{25} & \text{for } 5 < 1/\lambda < 30 \\ 1 & \text{for } 1/\lambda < 5 \end{cases} = \begin{cases} 0 & \text{for } \lambda < 1/30 \\ \frac{30}{25} - \frac{1}{25\lambda} & \text{for } 1/30 < \lambda < 1/5 \\ 1 & \text{for } \lambda > 1/5 \end{cases}
\]

Taking the derivative we get

\[
f_{\Lambda}(\lambda) = F'_{\Lambda}(\lambda) = \frac{1}{25\lambda^2} \text{ on } \frac{1}{30} < \lambda < \frac{1}{5}.
\]

From part (b) the likelihood \(f(x_i \mid \lambda) = \frac{\lambda e^{-\lambda x_i}}{Z(\lambda)}\). So the likelihood

\[
f(\text{data} \mid \lambda) = \frac{\lambda^4 e^{-\lambda} \sum x_i}{Z(\lambda)^4} = \frac{\lambda^4 e^{-43\lambda}}{Z(\lambda)^4}
\]

Now we have the prior and likelihood so we can do a Bayesian update:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>prior</th>
<th>likelihood</th>
<th>posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>(\frac{1}{25\lambda^2})</td>
<td>(\frac{\lambda^4 e^{-43\lambda}}{Z(\lambda)^4})</td>
<td>(\frac{\lambda^2 e^{-43\lambda}}{Z(\lambda)^4})</td>
</tr>
<tr>
<td>((1/30 < \lambda < 1/5))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Odds \(\left(\frac{1}{\lambda} > 10\right) \approx \text{Odds} \left(\lambda < \frac{1}{10}\right) = P(\lambda < 1/10) / P(\lambda > 1/10) \approx 10.1\).

9 NHST

19. (a) Our z-statistic is

\[
z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = \frac{6.25 - 4}{10/7} = 1.575
\]
Under the null hypothesis $z \sim N(0, 1)$ The two-sided p-value is

$$p = 2 \times P(Z > 1.575) = 2 \times 0.0576 = 0.1152$$

The probability was computed from the z-table. We interpolated between $z = 1.57$ and $z = 1.58$ Because $p > \alpha$ we do not reject H_0.

(b) The null pdf is standard normal as shown. The red shaded area is over the rejection region. The area used to compute significance is shown in red. The area used to compute the p-value is shown with blue stripes. Note, the z-statistic outside the rejection region corresponds to the blue completely covering the red.

![Graph showing z-distribution with critical values and shaded areas.]

20. (a)* Our t-statistic is

$$\frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{6.25 - 4}{6/7} = 2.625$$

Under the null hypothesis $t \sim t_{48}$. Using the t-table we find the two-sided p-value is

$$p = 2 \times P(t > 2.625) < 2 \times 0.005 = 0.01$$

Because $p < \alpha$ we reject H_0.

(b) The null pdf is a t-distribution as shown. The rejection region is shown. The area used to compute significance is shown in red. The area used to compute the p-value is shown with blue stripes. Note, the t-statistic is inside the rejection region corresponds. This corresponds to the red completely covering the blue. The critical values for t_{48} we’re looked up in the table.

![Graph showing t-distribution with critical values and shaded areas.]

21. See the psets 7 and 8.

22. Probability, MLE, goodness of fit

(a) This is a binomial distribution. Let θ be the Bernoulli probability of success in one test.

$$ p(x = k) = \binom{12}{k} \theta^k (1 - \theta)^{12-k}, \text{ for } k = 0, 1, \ldots, 12. $$

(b) The likelihood function for the combined data from all 60 centers is

$$ p(x_1, x_2, \ldots, x_{60} | \theta) = \binom{12}{x_1} \theta^{x_1} (1 - \theta)^{12-x_1} \binom{12}{x_2} \theta^{x_2} (1 - \theta)^{12-x_2} \cdots \binom{12}{x_{60}} \theta^{x_{60}} (1 - \theta)^{12-x_{60}} $$

$$ = c \theta^{\sum x_i} (1 - \theta)^{\sum (12-x_i)} $$

To find the maximum we use the log likelihood. At the same time we make the substitution $60 \cdot \bar{x}$ for $\sum x_i$.

$$ \ln(p(\text{data} | \theta)) = \ln(c) + 60 \bar{x} \ln(\theta) + 60(12 - \bar{x}) \ln(1 - \theta). $$

Now we set the derivative to 0:

$$ \frac{d \ln(p(\text{data} | \theta))}{d \theta} = 60 \frac{\bar{x}}{\theta} - \frac{60(12 - \bar{x})}{1 - \theta} = 0. $$

Solving for θ we get

$$ \hat{\theta} = \frac{\bar{x}}{12}. $$

(c) The sample mean is

$$ \bar{x} = \frac{\sum (\text{count} \times x)}{\sum \text{counts}} $$

$$ = \frac{4 \cdot 0 + 15 \cdot 1 + 17 \cdot 2 + 10 \cdot 3 + 8 \cdot 4 + 6 \cdot 5}{60} $$

$$ = 2.35 $$

(d) Just plug $\bar{x} = 2.35$ into the formula from part (b): $\hat{\theta} = \bar{x}/12 = 2.35/12 = 0.1958$

(e) There were 60 trials in all. Our hypotheses are:

$H_0 =$ the probability of success is the same at all centers. (This determines the probabilities of the counts in each cell of our table.)

$H_A =$ the probabilities for the cell counts can be anything as long as they sum to 1, i.e. x follows an arbitrary multinomial distribution.

Using the the value for $\hat{\theta}$ in part (d) we have the following table. The probabilities are computed using R, the expected counts are just the probabilities times 60. The components of X^2 are computed using the formula $X_i^2 = (E_i - O_i)^2 / E_i$.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(x)$</td>
<td>0.0731</td>
<td>0.2137</td>
<td>0.2863</td>
<td>0.2324</td>
<td>0.1273</td>
<td>0.0496</td>
</tr>
<tr>
<td>Observed</td>
<td>4</td>
<td>15</td>
<td>17</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Expected</td>
<td>4.3884</td>
<td>12.8241</td>
<td>17.1763</td>
<td>13.9428</td>
<td>7.63962</td>
<td>2.9767</td>
</tr>
<tr>
<td>X_i^2</td>
<td>0.0344</td>
<td>0.3692</td>
<td>0.0018</td>
<td>1.1149</td>
<td>0.0170</td>
<td>3.0707</td>
</tr>
</tbody>
</table>
The χ^2 statistic is $X^2 = \sum X_i^2 = 4.608$. There are 6 cells, so 4 degrees of freedom. The p-value is

$$p = 1 - \text{pchisq}(4.608, 4) = 0.3299$$

With this p-value we do not reject H_0.

The reason the degrees of freedom is two less than the number of cells is that there are two constraints on assigning cell counts assuming H_A but consistent with the statistics used to compute the expected counts. They are the total number of observations $= 60$, and the grand mean $\bar{x} = 2.35$.