You should have downloaded studio12.zip and unzipped it into your 18.05 working directory.
Review: Computing a bootstrap confidence interval

Starting with data x_1, x_2, \ldots, x_n and test statistic $\hat{\theta}$.

1. Generate a resample of the data of size n.
2. Compute the test statistic θ^*.
3. Compute and store the bootstrap difference $\theta^* - \hat{\theta}$.
4. Repeat steps 1-3 n_{boot} times.
5. The bootstrap confidence interval is

$$
\left[\hat{\theta} - \delta_{1-\alpha/2}^*, \hat{\theta} - \delta_{\alpha/2}^* \right]
$$

where $\delta_{\alpha/2}^*$ is a quantile.
Board question: two independent samples

Suppose \(x_1, x_2, \ldots, x_n \) and \(y_1, y_2, \ldots, y_m \) are independent samples drawn from distributions with means \(\mu_x \) and \(\mu_y \) respectively.

Describe in detail the steps for computing an empirical bootstrap 95% confidence interval for \(\mu_x - \mu_y \).
R Problem 1: Bootstrapping

The data file salaries.csv contains two columns of data: Salaries.1 and Salaries.2. Using R compute a 95% bootstrap confidence interval for the difference of the two means.

• The file studio12.r has code that will show you how load the data in salaries.csv

• studio12.r also has sample code for computing a one-sample bootstrap confidence interval.
We will use R to analyze financial data using simple linear regression.

- We’ll use publicly available data on the price of several stocks over a 14 year period from 2000 to 2014.
- We’ll use a simplified version of the *Capital Asset Pricing Model* or CAPM.
- The file `studio12.r` contains code for loading the data and fitting a line to two of the variables.
Exploring the original data

- The original data is in the file `studio12financialOriginal.csv`. The next two sides show a quick exploration of this data.

- The file contains daily prices or interest rates, over 14 years, for several stocks, bonds and a barrel of oil.

We will focus on:

- **SP500**: Standard & Poors stock index, the cost of a certain basket of stocks.
- **GE**: General Electric.
- **DCOICWTICO**: the price of a barrel of the benchmark West Texas crude oil.
Price plots

- The prices are scaled so they would all fit nicely on the same axes. For example, by plotting 40*GE vs. date it is at roughly the same scale as the others.
Daily rate of return

For this project we’ll look at the daily rate of return for the financial variables.

Our goal is to fit the data with linear models of the form

\[\text{DCOICWTICO}.\text{daily} = a + b\times\text{SP500}.\text{daily} \]

- The daily rate of return was precomputed using \text{studio12-prep.r}
- The data is stored in \text{studio12financialDaily.csv}
- The R file \text{studio12.r} has code to load this data and fit a linear model

Let’s look at \text{studio12.r} now!
Fitting a linear model using R

Linear model: DCOICWTICO.daily = a + b*SP500.daily

R code:

```r
lmfit = lm(DCOILWTICO.daily ~ SP500.daily)
summary(lmfit):
```

| Coefficients: | Estimate | Std. Error | t value | Pr(>|t|) |
|--|----------|------------|---------|----------|
| (Intercept) | 0.0003469| 0.0003546 | 0.978 | 0.328 |
| SP500.daily | 0.3325257| 0.0311009 | 10.692 | <2e-16 *** |

- This estimates the model coefficients as $$\hat{a} = 0.0003469$$ and $$\hat{b} = 0.3325257$$.

- Pr(>|t|) are p-values for a NHST with $$H_0$$ that the given coefficient is 0.

 $$\hat{b}$$ is significantly different from 0, with p-value $$< 2 \cdot 10^{-16}$$.

 $$\hat{a}$$ (the constant term) is not significantly different from 0.
Linear fit

Linear fit of DCOILWTICO.daily vs SP500,daily
slope = 0.33, intercept = 0
R Problem 2: Linear regression

1. Load the data from studio12financialDaily.csv
2. Do a linear fit of GE.daily vs. SP500.daily
3. Interpret the results.
4. Run the multiple linear regression at the end of studio12.r and interpret the results.