Your PRINTED name is: _________________________________ 1.
Your recitation number is ____________________________ 2.
3.

1. (40 points) Suppose u is a unit vector in \mathbb{R}^n, so $u^T u = 1$. This problem is about the n by n symmetric matrix $H = I - 2uu^T$.

(a) Show directly that $H^2 = I$. Since $H = H^T$, we now know that H is not only symmetric but also ____________________________.

(b) One eigenvector of H is u itself. Find the corresponding eigenvalue.

(c) If v is any vector perpendicular to u, show that v is an eigenvector of H and find the eigenvalue. With all these eigenvectors v, that eigenvalue must be repeated how many times? Is H diagonalizable? Why or why not?

(d) Find the diagonal entries H_{11} and H_{ii} in terms of u_1, \ldots, u_n. Add up $H_{11} + \ldots + H_{nn}$ and separately add up the eigenvalues of H.
2. (30 points) Suppose A is a positive definite symmetric n by n matrix.

(a) How do you know that A^{-1} is also positive definite? (We know A^{-1} is symmetric. I just had an e-mail from the International Monetary Fund with this question.)

(b) Suppose Q is any orthogonal n by n matrix. How do you know that $Q A Q^T = Q A Q^{-1}$ is positive definite? Write down which test you are using.

(c) Show that the block matrix

$$
B = \begin{bmatrix}
A & A \\
A & A
\end{bmatrix}
$$

is positive semidefinite. How do you know B is not positive definite?
3. **(30 points)** This question is about the matrix

\[
A = \begin{bmatrix}
0 & -1 \\
4 & 0 \\
\end{bmatrix}
\]

(a) Find its eigenvalues and eigenvectors.

Write the vector \(u(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \) as a combination of those eigenvectors.

(b) Solve the equation \(\frac{du}{dt} = Au \) starting with the same vector \(u(0) \) at time \(t = 0 \).

In other words: the solution \(u(t) \) is what combination of the eigenvectors of \(A \)?

(c) Find the 3 matrices in the Singular Value Decomposition \(A = U \Sigma V^T \) in two steps.

– First, compute \(V \) and \(\Sigma \) using the matrix \(A^T A \).

– Second, find the (orthonormal) columns of \(U \).
18.06 Linear Algebra
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.