A Basis for 3 by 3 Symmetric Matrices

The real 3 by 3 matrices form a vector space M. The symmetric matrices in M form a subspace S. If you add two symmetric matrices, or multiply by real numbers, the result is still a symmetric matrix. **Problem: Find a basis for S.**

When I asked this question on an exam, I realized that a key point needs to be emphasized: **The basis "vectors" for S must lie in the subspace.** They are 3 by 3 symmetric matrices! Then there are two requirements:

1. The basis vectors must be linearly independent.
2. Their combinations must produce every vector (matrix) in S.

Here is one possible basis (all symmetric) for this example:

\[
S_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad S_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad S_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
S_4 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad S_5 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad S_6 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\]

Since this basis contains 6 vectors, the **dimension of S is 6**.

Question: Find a basis for the subspace AS of 3 by 3 antisymmetric matrices (with $A^T = -A$). What is its dimension?

Bases for S and AS together give a basis for the whole space M (all 3 by 3 matrices). Write the upper triangular all-ones matrix U as a symmetric matrix plus an antisymmetric matrix.
18.06 Linear Algebra
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.