PROBLEM 1.

The field \(\mathbb{Q} \) is a linear space over \(\mathbb{Q} \), but not over \(\mathbb{R} \). In order to prove the latter statement by contradiction, suppose that \(\mathbb{Q} \) is a linear space over \(\mathbb{R} \). For \(v \neq 0, v \in \mathbb{Q}, f, g \in \mathbb{R}, f v = g v \Rightarrow f = g \) and \(f v \neq g v \Rightarrow f \neq g \). This then would give a one-to-one map from \(\mathbb{R} \) to \(\mathbb{Q} \) defined as \(f \mapsto f v \). However, since the cardinality of \(\mathbb{R} \) is greater than the cardinality of \(\mathbb{Q} \), there cannot be a one-to-one map from \(\mathbb{R} \) to \(\mathbb{Q} \). Thus, by contradiction, \(\mathbb{Q} \) is not a linear space over \(\mathbb{R} \). Conversely, one-to-one map from \(\mathbb{Q} \) to \(\mathbb{R} \) can be defined as \(q \mapsto qr, q \in \mathbb{Q}, r \in \mathbb{R} \). Hence, by restricting the coefficients from \(\mathbb{R} \) to \(\mathbb{Q} \), any linear space over \(\mathbb{R} \) becomes a linear space over \(\mathbb{Q} \).

PROBLEM 2.

(a) Yes, sequences with only finitely many nonzero elements are a subspace of \(A \). Let \(S \) be all the infinite sequences over \(\mathbb{R} \) with finitely many non-zero terms and let \(a, b \in S, k \in \mathbb{R} \). It is clear that \(a + kb \in S \) since the number of non-zero terms will still be finite.

(b) No, sequences with only finitely many zero terms are not a subspace of \(A \). Let \(S \) be all the infinite sequences over \(\mathbb{R} \) with only finitely many zero terms and let \(a \in S \). Since \(0 \cdot a = 0 \notin S \), \(S \) is not a linear space.

(c) Yes, Cauchy sequences are a subspace of \(A \). Let \(S \) be the set of all Cauchy sequences and \(a, b \in S \). Suppose \(\varepsilon_{ab} \) is given and choose \(\varepsilon_a, \varepsilon_b > 0 \) such that \(\varepsilon_{ab} = \varepsilon_a + \varepsilon_b \). Find \(N_a, N_b \in \mathbb{R} \) such that \(|a_n - a_m| < \varepsilon_a\) for all \(m, n > N_a \) (similarly for \(b \)). We need to locate \(N_{ab} \) such that \(|(a_n + b_n) - (a_m + b_m)| < \varepsilon_{ab}\) for all \(m, n > N_{ab} \). From triangle inequality \(|A + B| \leq |A| + |B|\). Hence, for \(N_{ab} = \max(N_a, N_b), |(a_n - a_m) + (b_n - b_m)| \leq \varepsilon_a + \varepsilon_b = \varepsilon_{ab} \).

(d) Yes, the sequences, for which the sum of the squares of the elements converges, is a subspace of \(A \). Let \(S \) be the set of all the infinite sequences \(\{a_i\}_{i=1}^{\infty}, a_i \in \mathbb{R} \) for which \(\sum_{i=1}^{\infty} a_i^2 \) converges. Then for \(a, b \in S, a + b \in S \): \(\sum (a_i + b_i)^2 = \sum a_i^2 + \sum b_i^2 + 2 \sum a_i b_i \). By Cauchy-Schwarz \((\sum x_i^2) \cdot (\sum y_i^2) \geq (\sum a_i b_i)^2 \). Also, for \(k \in \mathbb{R}, ka \in S \): \(\sum (ka_i)^2 = k^2 \cdot \sum a_i^2 \). Therefore, \(S \) is a linear space.

Date: February 17, 2004.