REFLECTIONS IN A EUCLIDEAN SPACE

YOUR NAME HERE

18.099 - 18.06 CI.
Due on Monday, May 10 in class.

Write a paper proving the statements formulated below. Add your own examples, asides and discussions whenever needed.

Let \(V \) be a finite dimensional real linear space.

Definition 1. A function \(\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R} \) is a bilinear form on \(V \) if for all \(x_1, x_2, x, y_1, y_2, y \in V \) and all \(k \in \mathbb{R} \),
\[
\langle x_1 + kx_2, y \rangle = \langle x_1, y \rangle + k\langle x_2, y \rangle, \quad \text{and}
\]
\[
\langle x, y_1 + ky_2 \rangle = \langle x, y_1 \rangle + k\langle x, y_2 \rangle.
\]

Definition 2. A bilinear form \(\langle \cdot, \cdot \rangle \) in \(V \) is symmetric if \(\langle x, y \rangle = \langle y, x \rangle \) for all \(x, y \in V \). A symmetric bilinear form is nondegenerate if \(\langle a, x \rangle = 0 \) for all \(x \in V \) implies \(a = 0 \). It is positive definite if \(\langle x, x \rangle > 0 \) for any nonzero \(x \in V \). An inner product on \(V \) is a symmetric positive definite bilinear form on \(V \).

Theorem 3. Define a bilinear form on \(V = \mathbb{R}^n \) by \(\langle e_i, e_j \rangle = \delta_{ij} \), where \(\{e_i\}_{i=1}^n \) is a basis in \(V \). Then \(\langle \cdot, \cdot \rangle \) is an inner product in \(V \).

Definition 4. An Euclidean space is a finite dimensional real linear space with an inner product.

Theorem 5. Any \(n \)-dimensional Euclidean space \(V \) has a basis \(\{e_i\}_{i=1}^n \) such that \(\langle e_i, e_j \rangle = \delta_{ij} \).

Hint: Use the Gram-Schmidt orthogonalization process.

Below \(V = \mathbb{R}^n \) is a Euclidean space with the inner product \(\langle \cdot, \cdot \rangle \).

Definition 6. Two vectors \(x, y \in V \) are orthogonal if \(\langle x, y \rangle = 0 \). Two subspaces \(U, W \in V \) are orthogonal if \(\langle x, y \rangle = 0 \) for all \(x \in U \) and \(y \in W \).

Check that if \(U \) and \(W \) are orthogonal subspaces in \(V \), then \(\dim(U) + \dim(W) = \dim(U + W) \).

Definition 7. The orthogonal complement of the subspace \(U \subset V \) is the subspace \(U^\perp = \{ y \in V : \langle x, y \rangle = 0, \text{ for all } x \in U \} \).

Date: July 18, 2004.
Definition 8. A hyperplane $H_x \subset V$ is the orthogonal complement to the one-dimensional subspace in V spanned by $x \in V$.

Theorem 9. (Cauchy-Schwartz). For any $x, y \in V$,

$$\langle x, y \rangle^2 \leq \langle x, x \rangle \cdot \langle y, y \rangle,$$

and equality holds if and only if the vectors x and y are linearly dependent.

We will be interested in the linear mappings that respect inner products.

Definition 10. An orthogonal operator in V is a linear automorphism $f : V \rightarrow V$ such that $\langle f(x), f(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$.

Theorem 11. If f_1, f_2 are orthogonal operators in V, then so are the inverses f_1^{-1} and f_2^{-1} and the composition $f_1 \circ f_2$. The identity mapping is orthogonal.

Remark 12. The above theorem says that orthogonal operators in a Euclidean space form a group, that is, a set closed with respect to compositions, containing an inverse to each element, and containing an identity operator.

Example 13. Describe the set of 2×2 matrices of all orthogonal operators in \mathbb{R}^2, and check that they form a group with respect to the matrix multiplication.

Now we are ready to introduce the notion of a reflection in a Euclidean space. A reflection in V is a linear mapping $s : V \rightarrow V$ which sends some nonzero vector $\alpha \in V$ to its negative and fixes pointwise the hyperplane H_α orthogonal to α. To indicate this vector, we will write $s = s_\alpha$. The use of Greek letters for vectors is traditional in this context.

Definition 14. A reflection in V with respect to a vector $\alpha \in V$ is defined by the formula:

$$s_\alpha(x) = x - \frac{2 \langle x, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha.$$

Theorem 15. With the above definition, we have:

1. $s_\alpha(\alpha) = -\alpha$ and $s_\alpha(x) = x$ for any $x \in H_\alpha$;
2. s_α is an orthogonal operator;
3. $s_\alpha^2 = Id$.

Therefore, reflections generate a group: their compositions are orthogonal operators by Theorem 11, and an inverse of a reflection is equal to itself by Theorem 15. Below we consider some basic examples of subgroups of orthogonal operators obtained by repeated application of reflections.

Example 16. Consider the group S_n of permutations of n numbers. It is generated by transpositions t_{ij} where $i \neq j$ are two numbers between 1 and n, and t_{ij} sends i to j and j to i, while preserving all other numbers.
The compositions of all such transpositions form S_n. Define a set of linear mappings $T_{ij} : \mathbb{R}^n \to \mathbb{R}^n$ in an orthonormal basis $\{e_i\}_{i=1}^n$ by

$$T_{ij}e_i = e_j; \quad T_{ij}e_j = e_i; \quad T_{ij}e_k = e_k, k \neq i, j.$$

Then, since any element $\sigma \in S_n$ is a composition of transpositions, it defines a linear automorphism of \mathbb{R}^n equal to the composition of the linear mappings defined above.

1. Check that T_{ij} acts as a reflection with respect to the vector $e_i - e_j \in \mathbb{R}^n$.
2. Check that any element σ of S_n fixes pointwise the line in \mathbb{R}^n spanned by $e_1 + e_2 + \ldots e_n$.
3. Let $n = 3$. Describe the action of each element (how many are there?) of S_3 in \mathbb{R}^3 and in the plane U orthogonal to $e_1 + e_2 + e_3$. Example 13 lists all matrices of orthogonal operators in \mathbb{R}^2. Identify among them the matrices corresponding to the elements of S_3 acting in U. Check that the product of two reflections is a rotation.

Example 17. The action of S_n in \mathbb{R}^n described above can be composed with the reflections $\{P_i\}_{i=1}^n$, sending e_i to its negative and fixing all other elements of the basis $e_k, k \neq i$.

1. Check that the obtained set of orthogonal operators has no nonzero fixed points (elements $x \in \mathbb{R}^n$ such that $f(x) = x$ for all f in the set).
2. How many distinct orthogonal operators can be constructed in this way for $n = 2$ and $n = 3$?
3. In case $n = 2$, identify the matrices of the obtained orthogonal operators among those listed in Example 13.

Remark 18. The two examples above correspond to the series A_{n-1} and B_n in the classification of finite reflection groups.