Differential equations and e^{At}

The system of equations below describes how the values of variables u_1 and u_2 affect each other over time:

$$\frac{du_1}{dt} = -u_1 + 2u_2$$
$$\frac{du_2}{dt} = u_1 - 2u_2.$$

Just as we applied linear algebra to solve a difference equation, we can use it to solve this differential equation. For example, the initial condition $u_1 = 1$, $u_2 = 0$ can be written $u(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Differential equations $\frac{du}{dt} = Au$

By looking at the equations above, we might guess that over time u_1 will decrease. We can get the same sort of information more safely by looking at the eigenvalues of the matrix $A = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}$ of our system $\frac{du}{dt} = Au$. Because A is singular and its trace is -3 we know that its eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = -3$. The solution will turn out to include e^{-3t} and e^{0t}. As t increases, e^{-3t} vanishes and $e^{0t} = 1$ remains constant. Eigenvalues equal to zero have eigenvectors that are steady state solutions.

$x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector for which $Ax_1 = 0x_1$. To find an eigenvector corresponding to $\lambda_2 = -3$ we solve $(A - \lambda_2 I)x_2 = 0$:

$$\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} x_2 = 0$$

so $x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

and we can check that $Ax_2 = -3x_2$. The general solution to this system of differential equations will be:

$$u(t) = c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t} x_2.$$

Is $e^{\lambda_1 t} x_1$ really a solution to $\frac{du}{dt} = Au$? To find out, plug in $u = e^{\lambda_1 t} x_1$:

$$\frac{du}{dt} = \lambda_1 e^{\lambda_1 t} x_1,$$

which agrees with:

$$Au = e^{\lambda_1 t} Ax_1 = \lambda_1 e^{\lambda_1 t} x_1.$$

The two “pure” terms $e^{\lambda_1 t} x_1$ and $e^{\lambda_2 t} x_2$ are analogous to the terms $\lambda_i^k x_i$ we saw in the solution $c_1 \lambda_1^1 x_1 + c_2 \lambda_2^1 x_2 + \cdots + c_n \lambda_n^1 x_n$ to the difference equation $u_{k+1} = Au_k$. 1
Plugging in the values of the eigenvectors, we get:

\[
\mathbf{u}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
\]

We know \(\mathbf{u}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \), so at \(t = 0 \):

\[
\begin{bmatrix} 1 \\ 0 \end{bmatrix} = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
\]

\(c_1 = c_2 = 1/3 \) and \(\mathbf{u}(t) = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \frac{1}{3} e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \).

This tells us that the system starts with \(u_1 = 1 \) and \(u_2 = 0 \) but that as \(t \) approaches infinity, \(u_1 \) decays to 2/3 and \(u_2 \) increases to 1/3. This might describe stuff moving from \(u_1 \) to \(u_2 \).

The steady state of this system is \(\mathbf{u}(\infty) = \begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix} \).

Stability

Not all systems have a steady state. The eigenvalues of \(\mathbf{A} \) will tell us what sort of solutions to expect:

1. **Stability:** \(\mathbf{u}(t) \to 0 \) when \(\text{Re}(\lambda) < 0 \).
2. **Steady state:** One eigenvalue is 0 and all other eigenvalues have negative real part.
3. **Blow up:** if \(\text{Re}(\lambda) > 0 \) for any eigenvalue \(\lambda \).

If a two by two matrix \(\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) has two eigenvalues with negative real part, its trace \(a + d \) is negative. The converse is not true: \(\begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \) has negative trace but one of its eigenvalues is 1 and \(e^{1t} \) blows up. If \(\mathbf{A} \) has a positive determinant and negative trace then the corresponding solutions must be stable.

Applying S

The final step of our solution to the system \(\frac{\text{d}\mathbf{u}}{\text{d}t} = \mathbf{A}\mathbf{u} \) was to solve:

\[
c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
\]

In matrix form:

\[
\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
\]
or \(Sc = u(0) \), where \(S \) is the eigenvector matrix. The components of \(c \) determine the contribution from each pure exponential solution, based on the initial conditions of the system.

In the equation \(\frac{du}{dt} = Au \), the matrix \(A \) couples the pure solutions. We set \(u = Sv \), where \(S \) is the matrix of eigenvectors of \(A \), to get:

\[
S \frac{dv}{dt} = ASv
\]

or:

\[
\frac{dv}{dt} = S^{-1}ASv = \Lambda v.
\]

This diagonalizes the system: \(\frac{dv}{dt} = \Lambda v \). The general solution is then:

\[
v(t) = e^{At}v(0), \quad \text{and} \quad u(t) = Se^{At}S^{-1}v(0) = e^{At}u(0).
\]

Matrix exponential \(e^{At} \)

What does \(e^{At} \) mean if \(A \) is a matrix? We know that for a real number \(x \),

\[
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots.
\]

We can use the same formula to define \(e^{At} \):

\[
e^{At} = I + At + \frac{(At)^2}{2} + \frac{(At)^3}{6} + \cdots.
\]

Similarly, if the eigenvalues of \(At \) are small, we can use the geometric series

\[
\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ to estimate } (I - At)^{-1} = I + At + (At)^2 + (At)^3 + \cdots.
\]

We’ve said that \(e^{At} = Se^{At}S^{-1} \). If \(A \) has \(n \) independent eigenvectors we can prove this from the definition of \(e^{At} \) by using the formula \(A = S\Lambda S^{-1} \):

\[
e^{At} = I + At + \frac{(At)^2}{2} + \frac{(At)^3}{6} + \cdots
= SS^{-1} + S\Lambda S^{-1}t + \frac{S\Lambda^2 S^{-1}t^2}{2} + \frac{S\Lambda^3 S^{-1}t^3}{6} + \cdots
= Se^{At}S^{-1}.
\]

It’s impractical to add up infinitely many matrices. Fortunately, there is an easier way to compute \(e^{At} \). Remember that:

\[
\Lambda = \begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & 0 & \cdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_n
\end{bmatrix}
\]
When we plug this in to our formula for e^{At} we find that:

$$e^{A t} = \begin{bmatrix}
e^{\lambda_1 t} & 0 & \cdots & 0 \\
0 & e^{\lambda_2 t} & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & e^{\lambda_n t}
\end{bmatrix}. \tag{20}$$

This is another way to see the relationship between the stability of $u(t) = Se^{At}S^{-1}v(0)$ and the eigenvalues of A.

Second order

We can change the second order equation $y'' + by' + ky = 0$ into a two by two first order system using a method similar to the one we used to find a formula for the Fibonacci numbers. If $u = \begin{bmatrix} y' \\ y \end{bmatrix}$, then

$$u' = \begin{bmatrix} y' \\ y'' \end{bmatrix} = \begin{bmatrix}
-b & -k \\
1 & 0
\end{bmatrix} \begin{bmatrix} y' \\ y \end{bmatrix}. \tag{21}$$

We could use the methods we just learned to solve this system, and that would give us a solution to the second order scalar equation we started with.

If we start with a kth order equation we get a k by k matrix with coefficients of the equation in the first row and 1’s on a diagonal below that; the rest of the entries are 0.