Exercises on Markov matrices; Fourier series

Problem 24.1: (6.4 #7. *Introduction to Linear Algebra*: Strang)

a) Find a symmetric matrix \(\begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix} \) that has a negative eigenvalue.

b) How do you know it must have a negative pivot?

c) How do you know it can’t have two negative eigenvalues?

Problem 24.2: (6.4 #23.) Which of these classes of matrices do \(A \) and \(B \) belong to: invertible, orthogonal, projection, permutation, diagonalizable, Markov?

\[
A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad B = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.
\]

Which of these factorizations are possible for \(A \) and \(B \): \(LU \), \(QR \), \(SAS^{-1} \), or \(QΛQ^T \)?
Problem 24.3: (8.3 #11.) Complete A to a Markov matrix and find the steady state eigenvector. When A is a symmetric Markov matrix, why is $x_1 = (1, \ldots, 1)$ its steady state?

\[
A = \begin{bmatrix}
.7 & .1 & .2 \\
.1 & .6 & .3 \\
_ & _ & _
\end{bmatrix}.
\]