Exercises on Markov matrices; Fourier series

Problem 24.1: (6.4 #7. Introduction to Linear Algebra: Strang)

a) Find a symmetric matrix \(\begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix} \) that has a negative eigenvalue.

b) How do you know it must have a negative pivot?

c) How do you know it can’t have two negative eigenvalues?

Solution:

a) The eigenvalues of that matrix are \(1 \pm b \). If \(b > 1 \) or \(b < -1 \) the matrix has a negative eigenvalue.

b) The pivots have the same signs as the eigenvalues. If the matrix has a negative eigenvalue, then it must have a negative pivot.

c) To obtain one negative eigenvalue, we choose either \(b > 1 \) or \(b < -1 \) (as stated in part (a)). If we choose \(b > 1 \), then \(\lambda_1 = 1 + b \) will be positive while \(\lambda_2 = 1 - b \) will be negative. Alternatively, if we choose \(b < -1 \), then \(\lambda_1 = 1 + b \) will be negative while \(\lambda_2 = 1 - b \) will be positive. Therefore this matrix cannot have two negative eigenvalues.

Problem 24.2: (6.4 #23.) Which of these classes of matrices do \(A \) and \(B \) belong to: invertible, orthogonal, projection, permutation, diagonalizable, Markov?

\[
A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad B = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.
\]

Which of these factorizations are possible for \(A \) and \(B \): \(LU \), \(QR \), \(SAS^{-1} \), or \(QΛQ^T \)?
Solution:

a) For A:

- $\det A = -1 \neq 0$. A is invertible.
- $AA^T = I$. A is orthogonal.
- $A^2 = I \neq A$. A is not a projection.
- A has one 1 in each row and column with 0’s elsewhere. A is a permutation.
- $A = A^T$, so A is symmetric. A is diagonalizable.
- Each column of A sums to one. A is Markov.
- $A = LU$ is not possible because $A_{11} = 0$. QR is possible because A has independent columns, SAS^{-1} is possible because it is diagonalizable, and QAQ^T is possible because it is symmetric.

b) For B:

- $\det B = 0$. B is not invertible.
- $BB^T \neq I$. B is not orthogonal.
- $B^2 = B$. B is a projection.
- B does not have one 1 in each row and each column, with 0’s elsewhere. B is not a permutation.
- $B = B^T$ so B is symmetric. B is diagonalizable.
- Each column of B sums to one. B is Markov.
- $B = LU$ is possible but U only contains one nonzero pivot. QR is impossible because B has dependent columns, SAS^{-1} is possible because it is diagonalizable, and QAQ^T is possible because it is symmetric.

Problem 24.3: (8.3 #11.) Complete A to a Markov matrix and find the steady state eigenvector. When A is a symmetric Markov matrix, why is $x_1 = (1, \ldots, 1)$ its steady state?

$$A = \begin{bmatrix} .7 & .1 & .2 \\ .1 & .6 & .3 \\ _ & _ & _ \end{bmatrix}.$$

Solution: Matrix A becomes:

$$A = \begin{bmatrix} .7 & .1 & .2 \\ .1 & .6 & .3 \\ .2 & .3 & .5 \end{bmatrix},$$
with steady state vector (1,1,1). When A is a symmetric Markov matrix, the elements of each row sum to one. The elements of each row of $A - I$ then sum to zero. Since the steady state vector x is the eigenvector associated with eigenvalue $\lambda = 1$, we solve $(A - \lambda I)x = (A - I)x = 0$ to get $x = (1, \ldots, 1)$.