Exercises on orthogonal matrices and Gram-Schmidt

Problem 17.1: (4.4 #10.b Introduction to Linear Algebra: Strang)
Orthogonal vectors are automatically linearly independent.
Matrix Proof: Show that $Qx = 0$ implies $x = 0$. Since Q may be rectangular, you can use Q^T but not Q^{-1}.

Solution: By definition, Q is a matrix whose columns are orthonormal, and so we know that $Q^TQ = I$ (where Q may be rectangular). Then:

$$Qx = 0 \implies Q^TQx = 0 \implies Ix = 0 \implies x = 0.$$

Thus the nullspace of Q is the zero vector, and so the columns of Q are linearly independent. There are no non-zero linear combinations of the columns that equal the zero vector. Thus, orthonormal vectors are automatically linearly independent.

Problem 17.2: (4.4 #18) Given the vectors a, b and c listed below, use the Gram-Schmidt process to find orthogonal vectors A, B, and C that span the same space.

$$a = (1, -1, 0, 0), \quad b = (0, 1, -1, 0), \quad c = (0, 0, 1, -1).$$

Show that $\{A, B, C\}$ and $\{a, b, c\}$ are bases for the space of vectors perpendicular to $d = (1, 1, 1, 1)$.

Solution: We apply Gram-Schmidt to a, b, c. First, we set

$$A = a = (1, -1, 0, 0).$$

Next we find B:

$$B = b - \frac{A^Tb}{A^TA}A = (0, 1, -1, 0) + \frac{1}{2}(1, -1, 0, 0) = \left(\frac{1}{2}, \frac{1}{2}, 1, 0 \right).$$

And then we find C:

$$C = c - \frac{A^Tc}{A^TA}A - \frac{B^Tc}{B^TB}B = (0, 0, 1, -1) + \frac{2}{3}\left(\frac{1}{3}, \frac{1}{3}, -1, 0 \right) = \left(\frac{1}{3}, \frac{1}{3}, 1, -1 \right).$$
We know from the first problem that the elements of the set \{A, B, C\} are linearly independent, and each vector is orthogonal to (1,1,1,1). The space of vectors perpendicular to \(\mathbf{d} \) is three dimensional (since the row space of \((1, 1, 1, 1)\) is one-dimensional, and the number of dimensions of the row space added to the number of dimensions of the nullspace add to 4). Therefore \{A, B, C\} forms a basis for the space of vectors perpendicular to \(\mathbf{d} \).

Similarly, \{a, b, c\} is a basis for the space of vectors perpendicular to \(\mathbf{d} \) because the vectors are linearly independent, orthogonal to \((1,1,1,1)\), and because there are three of them.
18.06SC Linear Algebra
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.