Orthogonal matrices and Gram-Schmidt

In this lecture we finish introducing orthogonality. Using an orthonormal basis or a matrix with orthonormal columns makes calculations much easier. The Gram-Schmidt process starts with any basis and produces an orthonormal basis that spans the same space as the original basis.

Orthonormal vectors

The vectors \(q_1, q_2, \ldots, q_n \) are orthonormal if:

\[
q_i^T q_j = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j.
\end{cases}
\]

In other words, they all have (normal) length 1 and are perpendicular (ortho) to each other. Orthonormal vectors are always independent.

Orthonormal matrix

If the columns of \(Q = [\quad q_1 \ldots q_n \quad] \) are orthonormal, then \(Q^T Q = I \) is the identity.

Matrices with orthonormal columns are a new class of important matrices to add to those on our list: triangular, diagonal, permutation, symmetric, reduced row echelon, and projection matrices. We’ll call them “orthonormal matrices”.

A square orthonormal matrix \(Q \) is called an orthogonal matrix. If \(Q \) is square, then \(Q^T Q = I \) tells us that \(Q^T = Q^{-1} \).

For example, if \(Q = \begin{bmatrix} 0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \end{bmatrix} \) then \(Q^T = \begin{bmatrix} 0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \end{bmatrix} \). Both \(Q \) and \(Q^T \) are orthogonal matrices, and their product is the identity.

The matrix \(Q = \begin{bmatrix} \cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \end{bmatrix} \) is orthogonal. The matrix \(\begin{bmatrix} 1 & 1 \\
1 & -1 \end{bmatrix} \) is not, but we can adjust that matrix to get the orthogonal matrix \(Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\
1 & -1 \end{bmatrix} \).

We can use the same tactic to find some larger orthogonal matrices called Hadamard matrices:

\[
Q = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1 \end{bmatrix}.
\]

An example of a rectangular matrix with orthonormal columns is:

\[
Q = \frac{1}{3} \begin{bmatrix} 1 & -2 \\
2 & -1 \\
2 & 2 \end{bmatrix}.
\]
We can extend this to a (square) orthogonal matrix:

\[
\begin{bmatrix}
1 & -2 & 2 \\
-2 & -2 & 1 \\
2 & 2 & 1
\end{bmatrix}.
\]

These examples are particularly nice because they don’t include complicated square roots.

Orthonormal columns are good

Suppose \(Q \) has orthonormal columns. The matrix that projects onto the column space of \(Q \) is:

\[
P = Q^T(Q^TQ)^{-1}Q^T.
\]

If the columns of \(Q \) are orthonormal, then \(Q^TQ = I \) and \(P = QQ^T \). If \(Q \) is square, then \(P = I \) because the columns of \(Q \) span the entire space.

Many equations become trivial when using a matrix with orthonormal columns. If our basis is orthonormal, the projection component \(\hat{x}_i \) is just \(q_i^Tb \) because \(A^TA\hat{x} = A^Tb \) becomes \(\hat{x} = Q^Tb \).

Gram-Schmidt

With elimination, our goal was “make the matrix triangular”. Now our goal is “make the matrix orthonormal”.

We start with two independent vectors \(a \) and \(b \) and want to find orthonormal vectors \(q_1 \) and \(q_2 \) that span the same plane. We start by finding orthogonal vectors \(A \) and \(B \) that span the same space as \(a \) and \(b \). Then the unit vectors \(q_1 = \frac{A}{||A||} \) and \(q_2 = \frac{B}{||B||} \) form the desired orthonormal basis.

Let \(A = a \). We get a vector orthogonal to \(A \) in the space spanned by \(a \) and \(b \) by projecting \(b \) onto \(a \) and letting \(B = b - p \). (\(B \) is what we previously called \(e \).)

\[
B = b - \frac{A^Tb}{A^TA}A.
\]

If we multiply both sides of this equation by \(A^T \), we see that \(A^TB = 0 \).

What if we had started with three independent vectors, \(a, b \) and \(c \)? Then we’d find a vector \(C \) orthogonal to both \(A \) and \(B \) by subtracting from \(c \) its components in the \(A \) and \(B \) directions:

\[
C = c - \frac{A^Tc}{A^TA}A - \frac{B^Tc}{B^TB}B.
\]
For example, suppose $a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$. Then $A = a$ and:

$$B = \begin{bmatrix}
1 \\
0 \\
2
\end{bmatrix} - \frac{A^T b}{A^T A} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix}
1 \\
0 \\
2
\end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix}.$$

Normalizing, we get:

$$Q = \begin{bmatrix} q_1 & q_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & -1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix}.$$

The column space of Q is the plane spanned by a and b.

When we studied elimination, we wrote the process in terms of matrices and found $A = LU$. A similar equation $A = QR$ relates our starting matrix A to the result Q of the Gram-Schmidt process. Where L was lower triangular, R is upper triangular.

Suppose $A = \begin{bmatrix} a_1 & a_2 \end{bmatrix}$. Then:

$$A \begin{bmatrix} Q & R \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \begin{bmatrix} a_1^T q_1 & a_2^T q_1 \\ a_1^T q_2 & a_2^T q_2 \end{bmatrix}.$$

If R is upper triangular, then it should be true that $a_1^T q_2 = 0$. This must be true because we chose q_1 to be a unit vector in the direction of a_1. All the later q_i were chosen to be perpendicular to the earlier ones.

Notice that $R = Q^T A$. This makes sense; $Q^T Q = I$.

3