Singular value decomposition

The singular value decomposition of a matrix is usually referred to as the SVD. This is the final and best factorization of a matrix:

\[A = U \Sigma V^T \]

where \(U \) is orthogonal, \(\Sigma \) is diagonal, and \(V \) is orthogonal.

In the decomposition \(A = U \Sigma V^T \), \(A \) can be any matrix. We know that if \(A \) is symmetric positive definite its eigenvectors are orthogonal and we can write \(A = Q \Lambda Q^T \). This is a special case of a SVD, with \(U = V = Q \). For more general \(A \), the SVD requires two different matrices \(U \) and \(V \).

We’ve also learned how to write \(A = S \Lambda S^{-1} \), where \(S \) is the matrix of \(n \) distinct eigenvectors of \(A \). However, \(S \) may not be orthogonal; the matrices \(U \) and \(V \) in the SVD will be.

How it works

We can think of \(A \) as a linear transformation taking a vector \(v_1 \) in its row space to a vector \(u_1 = Av_1 \) in its column space. The SVD arises from finding an orthogonal basis for the row space that gets transformed into an orthogonal basis for the column space: \(Av_i = \sigma_i u_i \).

It’s not hard to find an orthogonal basis for the row space – the Gram-Schmidt process gives us one right away. But in general, there’s no reason to expect \(A \) to transform that basis to another orthogonal basis.

You may be wondering about the vectors in the nullspaces of \(A \) and \(A^T \). These are no problem – zeros on the diagonal of \(\Sigma \) will take care of them.

Matrix language

The heart of the problem is to find an orthonormal basis \(v_1, v_2, \ldots, v_r \) for the row space of \(A \) for which

\[A \begin{bmatrix} v_1 & v_2 & \cdots & v_r \end{bmatrix} = \begin{bmatrix} \sigma_1 u_1 & \sigma_2 u_2 & \cdots & \sigma_r u_r \end{bmatrix} \]

\[= \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{bmatrix} \]

with \(u_1, u_2, \ldots, u_r \) an orthonormal basis for the column space of \(A \). Once we add in the nullspaces, this equation will become \(AV = U \Sigma \). (We can complete the orthonormal bases \(v_1, \ldots, v_r \) and \(u_1, \ldots, u_r \) to orthonormal bases for the entire space any way we want. Since \(v_{r+1}, \ldots, v_n \) will be in the nullspace of \(A \), the diagonal entries \(\sigma_{r+1}, \ldots, \sigma_n \) will be 0.)

The columns of \(U \) and \(V \) are bases for the row and column spaces, respectively. Usually \(U \neq V \), but if \(A \) is positive definite we can use the same basis for its row and column space!
Calculation

Suppose A is the invertible matrix $\begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$. We want to find vectors v_1 and v_2 in the row space \mathbb{R}^2, u_1 and u_2 in the column space \mathbb{R}^2, and positive numbers σ_1 and σ_2 so that the v_i are orthonormal, the u_i are orthonormal, and the σ_i are the scaling factors for which $A v_i = \sigma_i u_i$.

This is a big step toward finding orthonormal matrices V and U and a diagonal matrix Σ for which:

$$AV = U \Sigma.$$

Since V is orthogonal, we can multiply both sides by $V^{-1} = V^T$ to get:

$$A = U \Sigma V^T.$$

Rather than solving for U, V and Σ simultaneously, we multiply both sides by $A^T V \Sigma^T U^T$ to get:

$$A^T A = V \Sigma U^{-1} U \Sigma V^T$$

$$= V \Sigma^2 V^T$$

$$= V \begin{bmatrix} \sigma_1^2 & 0 & \cdots \\ 0 & \sigma_2^2 & \cdots \\ \vdots & \vdots & \ddots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix} V^T.$$

This is in the form $Q \Lambda Q^T$; we can now find V by diagonalizing the symmetric positive definite (or semidefinite) matrix $A^T A$. The columns of V are eigenvectors of $A^T A$ and the eigenvalues of $A^T A$ are the values σ_i^2. (We choose σ_i to be the positive square root of λ_i.)

To find U, we do the same thing with $A A^T$.

SVD example

We return to our matrix $A = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$. We start by computing

$$A^T A = \begin{bmatrix} 4 & -3 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 25 & 7 \\ 7 & 25 \end{bmatrix}.$$
Two orthogonal eigenvectors of $A^T A$ are $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$. To get an orthonormal basis, let $v_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$. These have eigenvalues $\sigma_1^2 = 32$ and $\sigma_2^2 = 18$. We now have:

$$
\begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} U = \begin{bmatrix} \sigma_1 \\ 0 \\ 0 \end{bmatrix} V^T
$$

$$
A U \Sigma V^T = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 4 \sqrt{2} & 0 \\ 0 & 3 \sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}.
$$

We could solve this for U, but for practice we’ll find U by finding orthonormal eigenvectors u_1 and u_2 for $A A^T = U \Sigma^2 U^T$. We have:

$$
A A^T = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}
$$

$$
= \begin{bmatrix} 32 & 0 \\ 0 & 18 \end{bmatrix}.
$$

Luckily, $A A^T$ happens to be diagonal. It’s tempting to let $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, as Professor Strang did in the lecture, but because $A v_2 = \begin{bmatrix} 0 \\ -3 \sqrt{2} \end{bmatrix}$ we instead have $u_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Note that this also gives us a chance to double check our calculation of σ_1 and σ_2.

Thus, the SVD of A is:

$$
\begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} U = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} V^T
$$

$$
= \begin{bmatrix} 4 \sqrt{2} & 0 \\ 0 & 3 \sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}.
$$

Example with a nullspace

Now let $A = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$. This has a one dimensional nullspace and one dimensional row and column spaces.

The row space of A consists of the multiples of $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$. The column space of A is made up of multiples of $\begin{bmatrix} 4 \\ 8 \end{bmatrix}$. The nullspace and left nullspace are perpendicular to the row and column spaces, respectively.

Unit basis vectors of the row and column spaces are $v_1 = \begin{bmatrix} .8 \\ .6 \end{bmatrix}$ and $u_1 = \begin{bmatrix} .5 \\ .3 \end{bmatrix}$.
\[
\begin{bmatrix}
1/\sqrt{5} \\
2/\sqrt{5}
\end{bmatrix}.
\]
To compute \(\sigma_1\) we find the nonzero eigenvalue of \(A^T A\).

\[
A^T A = \begin{bmatrix} 4 & 8 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}
= \begin{bmatrix} 80 & 60 \\ 60 & 45 \end{bmatrix}.
\]

Because this is a rank 1 matrix, one eigenvalue must be 0. The other must equal the trace, so \(\sigma_1^2 = 125\). After finding unit vectors perpendicular to \(u_1\) and \(v_1\) (basis vectors for the left nullspace and nullspace, respectively) we see that the SVD of \(A\) is:

\[
\begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} \sqrt{125} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} .8 & .6 \\ .6 & -.8 \end{bmatrix}.
\]

The singular value decomposition combines topics in linear algebra ranging from positive definite matrices to the four fundamental subspaces.

\(v_1, v_2, \ldots v_r\) is an orthonormal basis for the row space.

\(u_1, u_2, \ldots u_r\) is an orthonormal basis for the column space.

\(v_{r+1}, \ldots v_n\) is an orthonormal basis for the nullspace.

\(u_{r+1}, \ldots u_m\) is an orthonormal basis for the left nullspace.

These are the “right” bases to use, because \(A v_i = \sigma_i u_i\).