18.085 Computational Science and Engineering I
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Problem 1 (40 points)

This question is about a fixed-free hanging bar (made of 2 materials) with a point load at \(x = \frac{3}{4} \):

\[
\begin{align*}
-\frac{d}{dx} \left(c(x) \frac{du}{dx} \right) &= \delta \left(x - \frac{3}{4} \right) \\
u(0) &= 0 \\
w(1) &= 0
\end{align*}
\]

Suppose that

\[
c(x) = \begin{cases}
1, & x < \frac{1}{2} \\
4, & x > \frac{1}{2}
\end{cases}
\]

a) (i) At \(x = \frac{1}{2} \), \(u \) and \(w \) are continuous. Then \(u_x \) must have a jump (ii) At \(x = \frac{3}{4} \), \(u \) is continuous (as always) while \(w \) jumps by 1. We should expect \(\frac{dw}{dx} \) to have a jump unless such jump is "accidentally" 0.

b) \(w(x) = \begin{cases}
A, & 0 < x < \frac{3}{4} \\
B, & \frac{3}{4} < x < 1
\end{cases} \)

where the three constants \(A \), \(B \), and \(C \) are determined from the boundary condition \(w(1) = 0 \), resulting in

\[
C = 0,
\]

continuity of \(w \) at \(x = \frac{1}{2} \), resulting in

\[
4B - A = 0,
\]

and \([w]_- = -1 \), resulting in

\[
4C - 4B = -1
\]

This system with three equation and three unknowns is easily solved, yielding \(A = 1, B = \frac{1}{4}, C = 0 \). Summarizing:

\[
w(x) = \begin{cases}
1, & 0 < x < \frac{3}{4} \\
\frac{1}{4}, & \frac{3}{4} < x < 1
\end{cases}
\]

c) \(u = \begin{cases}
x + D, & 0 < x < \frac{1}{4} \\
\frac{1}{4}x + E, & \frac{1}{4} < x < \frac{3}{4} \\
F, & \frac{3}{4} < x < 1
\end{cases} \)

where the three constants \(D \), \(E \), and \(F \) are determined from the boundary condition \(u(0) = 0 \):

\[
D = 0,
\]
continuity of \(u \) at \(x = \frac{1}{2} \):

\[
\frac{1}{4} \times \frac{1}{2} + E - \frac{1}{2} - D = 0,
\]

and continuity of \(u \) at \(x = \frac{3}{4} \):

\[
F - \frac{1}{4} \times \frac{3}{4} - E = 0.
\]

We find that \(D = 0, E = \frac{3}{8}, F = \frac{9}{16} \) and so

\[
u = \begin{cases}
\frac{1}{4}x + \frac{3}{8}, & 0 < x < \frac{1}{2} \\
\frac{9}{16}, & \frac{1}{2} < x < 1
\end{cases}
\]

Problem 2 (30 points)

a)

(i) It is easy to show that

\[
\left(\frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2} \right) (x + iy) = 1
\]

Therefore,

\[
\frac{1}{z} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}
\]

and the real and imaginary parts are

\[
u(x, y) = \frac{x}{x^2 + y^2} \quad \text{ and } \quad s(x, y) = -\frac{y}{x^2 + y^2}
\]

(ii) In polar coordinates we have

\[
\frac{1}{z} = \frac{1}{re^{i\theta}} = \frac{1}{r} e^{-i\theta} = \frac{1}{r} (\cos \theta - i \sin \theta)
\]

Therefore,

\[
u(r, \theta) = \frac{1}{r} \cos \theta \quad \text{ and } \quad s(r, \theta) = -\frac{1}{r} \sin \theta
\]

b) The curve \(u(x, y) = \frac{1}{2} \) has the following equation:

\[
\frac{x}{x^2 + y^2} = \frac{1}{2}
\]

This equation is equivalent to

\[
x^2 + y^2 - 2x = 0
\]
or
\[x^2 - 2x + 1 + y^2 = 1 \]
or, finally
\[(x - 1)^2 + y^2 = 1 \]
Similarly, the curve \(s(x, y) = \frac{1}{2} \) is given by
\[x^2 + (y + 1)^2 = 1 \]
The curve \(u(x, y) = \frac{1}{2} \) is a circle of radius 1 centered at the point \((1, 0)\) while the curve \(s(x, y) = \frac{1}{2} \) is a circle of radius 1 centered at \((0, -1)\).

(c) On the part \(u(x, y) = \frac{1}{2} \) simply take \(u_0 = \frac{1}{2} \). Now let's look at the other part. It is orthogonal to the equipotentials of \(u \). In other words, \(u \) does not change in the directions orthogonal to the part. Analytically, this is expressed as \(\frac{\partial s}{\partial n} = 0 \) or \(w \cdot n = 0 \).

Problem 3 (30 points)

a). We have

\[
\begin{align*}
 u_x &= \frac{\partial^2 F}{\partial y \partial x} \\
 u_y &= \frac{\partial^2 F}{\partial y^2} \\
 s_x &= \frac{\partial^2 F}{\partial x^2} \\
 s_y &= \frac{\partial^2 F}{\partial x \partial y}
\end{align*}
\]

It can be immediately observed that \(u_x = s_y \) since partial derivatives commute. Also, \(u_y + s_x = \Delta F = 0 \) since \(F \) is harmonic.

b). The test for "having originated from a potential" is "\(\text{curl} u = 0 \)". Reconstructing the potential is a little less straightforward.

(i) \(v(x, y) = (x^2, y^2) \): Yes, \(u = \frac{1}{3}x^3 + \frac{1}{3}y^3 \), \(\Delta u = 2x + 2y \neq 0 \)

(ii) \(v(x, y) = (y^2, x^2) \): No.

(iii) \(v(x, y) = (x + y, x - y) \): Yes, \(u = \frac{1}{2}x^2 + xy - \frac{1}{2}y^2 \), \(\Delta u = 0 \)

c) (i)

\[
 u(r, \theta) = \frac{1}{2} + r \cos \theta + r^2 \cos 2\theta
\]

(ii)

\[
 u(r = 0, \theta) = \frac{1}{2}
\]

(A harmonic function equals to the average of its neighbors!)

\[
 u \left(r = \frac{1}{2}, \theta = 0 \right) = \frac{5}{4}
\]
Miscellaneous

Problem 1d) This is what the solution would be if we were to account for the weight P of the bottom part of the bar

$$w(x) = \begin{cases}
G, & 0 < x < \frac{3}{4} \\
-Px + H, & \frac{1}{2} < x < \frac{3}{4} \\
-Px + I, & \frac{3}{4} < x < 1
\end{cases}$$

The same three conditions will determine the constants: $w(1) = 0$:

$$I - P = 0,$$

continuity of w at $x = \frac{1}{2}$:

$$4 \left(-\frac{1}{2}P + H \right) - G = 0,$$

and the jump in w at $x = \frac{3}{4}$:

$$4I - 4H = -1$$

The resulting system determines the unknown constants: $G = 6P + 1$, $H = P + \frac{1}{4}$, and $I = P$:

$$w(x) = \begin{cases}
6P + 1, & 0 < x < \frac{3}{4} \\
P(1-x) + \frac{1}{4}, & \frac{1}{2} < x < \frac{3}{4} \\
P(1-x), & \frac{3}{4} < x < 1
\end{cases}$$