Thank you for taking 18.085, I hope you enjoyed it.

1) (35 pts.) Suppose the 2π-periodic $f(x)$ is a half-length square wave:

$$f(x) = \begin{cases}
1 & \text{for } 0 < x < \pi/2 \\
-1 & \text{for } -\pi/2 < x < 0 \\
0 & \text{elsewhere in } [-\pi, \pi]
\end{cases}$$

(a) Find the Fourier cosine and sine coefficients a_k and b_k of $f(x)$.

(b) Compute $\int_{-\pi}^{\pi} (f(x))^2 \, dx$ as a number and also as an infinite series using the a_k^2 and b_k^2.

(c) DRAW A GRAPH of its integral $I(x)$. (Then $dI/dx = f(x)$ on the interval $[-\pi, \pi]$ choose the integration constant so $I(0) = 0$.) What are the Fourier coefficients A_k and B_k of $I(x)$?

(d) DRAW A GRAPH of the derivative $D(x) = \frac{df}{dx}$ from $-\pi$ to π. What are the Fourier coefficients of $D(x)$?

(e) If you convolve $D(x) \ast I(x)$ why do you get the same answer as $f(x) \ast f(x)$? Not required to find that answer, just explain $D \ast I = f \ast f$.

(a) $f(x)$ is an odd function $= -f(-x)$ so all $a_k = 0$.

Half-interval: $b_k = \frac{2}{\pi} \int_0^{\pi/2} \sin kx \, dx = \frac{2}{\pi} \frac{1-\cos(k\pi/2)}{k}$.
(b) $\int_{-\pi}^{\pi} (f(x))^2 \, dx = \int_{-\pi/2}^{\pi/2} = \pi$. By Parseval this equals $\pi \sum b_k^2$. (Substituting $b_k = \frac{2}{\pi} \left(\frac{1}{1}, \frac{2}{2}, \frac{3}{3}, \ldots \right)$ will give a remarkable formula from $\sum b_k^2 = 1$.)

Integration starting at 0 or $-\pi$

Even function so $B_k = 0$.

Integrating $b_k \sin kx$ gives $-b_k \cos kx$ so $A_k = -\frac{b_k}{k}$.

The constant term is $A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} I(x) \, dx = \frac{3\pi}{8} \text{ or } -\frac{\pi}{8}$ (integrate starting at 0 or $-\pi$).

(d) $D(x) = \frac{d}{dx} 2\delta(x)$

Even function so $B_k = 0$.

Derivative of $b_k \sin kx$ is $k b_k \cos kx$ so $A_k = k b_k$.

Constant term is $A_0 = 0$.

(e) Convolution in x-space is multiplication in k-space. So $f \ast f$ has complex Fourier coefficients c_k^2 (with factor 2π). And $D(x) \ast I(x)$ has Fourier coefficients $(ik c_k)(c_k/i) = c_k^2$ (with same factor). $D \ast I = f \ast f!!$ Check in x-space:

$$\int_{-\pi}^{\pi} I(t) D(x - t) \, dt = \text{integrate by parts = }$$

$$\int_{-\pi}^{\pi} f(t) f(x - t) \, dt + \text{(boundary term = 0 by periodicity)}.$$

The usual minus sign disappears because of 2nd minus sign: $\frac{d}{dt} D(x - t) = -f(x - t)$.

NOTE: I have now learned that we can’t just multiply sine coefficients $(k b_k)(-b_k/k)$ because that gives an unwanted minus sign as in $\int \sin t \sin(x - t) \, dt = -\pi \cos x$.
2) (33 pts.)

(a) Compute directly the convolution \(f \ast f \) (cyclic convolution with \(N = 6 \)) when \(f = (0, 0, 0, 1, 0, 0) \). [You could connect vectors \((f_0, \ldots, f_5)\) with polynomials \(f_0 + f_1w + \cdots + f_5w^5 \) if you want to.]

(b) What is the Discrete Fourier Transform \(\mathbf{c} = (c_0, c_1, c_2, c_3, c_4, c_5) \) of the vector \(f = (0, 0, 0, 1, 0, 0) \)? Still \(N = 6 \).

(c) Compute \(f \ast f \) another way, by using \(\mathbf{c} \) in “transform space” and then transforming back.

With \(N = 6 \) the complex number \(w = e^{2\pi i/6} \) has \(w^3 = -1 \) and \(w^6 = 1 \).

(a) \(f = (0, 0, 0, 1, 0, 0) \) corresponds to \(w^3 \). Then \(f \ast f \) corresponds to \(w^6 \) which is 1. So \(f \ast f = (1, 0, 0, 0, 0, 0) \). (Also seen by circulant matrix multiplication.)

(b) The transform \(\mathbf{c} = F^{-1}f = \frac{1}{6} \mathbf{F}f = \frac{1}{6} \) (column of \(\mathbf{F} \) with powers of \(w^3 = -1 \)): Then \(\mathbf{c} = \frac{1}{6} (1, -1, 1, -1, 1, -1) \).

(c) The transform of \(f \ast f \) is \(\frac{6}{36} (1^2, (-1)^2, 1^2, (-1)^2, 1^2, (-1)^2) = \frac{1}{6} (1, 1, 1, 1, 1, 1) \).

Multiply that vector \(v \) by \(F \) to transform back and \(Fv = (1, 0, 0, 0, 0, 0) \) as in part (a)!
3) (32 pts.) On page 310 Example 3, the Fourier integral transform of the one-sided decaying pulse \(f(x) = e^{-ax} \) (for \(x \geq 0 \)) \(f(x) = 0 \) (for \(x < 0 \)) is computed for \(-\infty < k < \infty \) as

\[
\hat{f}(k) = \frac{1}{a + ik}.
\]

(a) Suppose this one-sided pulse is shifted to start at \(x = L > 0 \):

\[
f_L(x) = e^{-a(x-L)} \text{ for } x \geq L, \quad f_L(x) = 0 \text{ for } x < L.
\]

Find the Fourier integral transform \(\hat{f}_L(k) \).

(b) Draw a rough graph of the difference \(D(x) = f(x) - f_L(x) \), on the whole line \(-\infty < x < \infty \). Find its transform \(\hat{D}(k) \). NOW LET \(a \to 0 \).

What is the limit of \(D(x) \) as \(a \to 0 \)?

What is the limit of \(\hat{D}(k) \) as \(a \to 0 \)?

(c) The function \(f_L(x) \) is smooth except for a \(\boxed{\text{jump}} \) at \(x = L \), so the decay rate of \(\hat{f}_L(k) \) is \(\boxed{1/k} \). The convolution \(C(x) = f_L(x) * f_L(x) \) has transform \(\hat{C}(k) = \frac{e^{-ikL}}{(a + ik)^2} \) with decay rate \(\boxed{1/k^2} \).

Then in \(x \)-space this convolution \(C(x) \) has a \(\boxed{\text{corner (= ramp)}} \) at the point \(x = \boxed{2L} \).

(a) \(f_L(x) \) is \(f(x - L) \). By the shift rule (page 317) \(\hat{f}_L(k) = e^{-ikL} \hat{f}(k) = \frac{e^{-ikL}}{a + ik} \).

(b) \(D(x) \)

\[
\begin{array}{c}
D(x) \\
\hline
0 & L \\
\hline
\end{array}
\]

As \(a \to 0 \), \(D(x) \) approaches 1 for \(0 < x < L \), 0 elsewhere

\[a = 1: \text{Graph } e^{-x} \text{ then } e^{-x} - e^{-(x-L)} \]

\[\hat{D}(k) = \frac{1}{a + ik} - \frac{e^{-ikL}}{a + ik} \text{ approaches } \frac{1-e^{-ikL}}{ik} = \text{transform of square pulse.} \]

(c) FILLED IN BLANKS ABOVE