1) (40 pts.) This question is about 2π-periodic functions.

(a) Suppose $f(x) = \sum c_k e^{ikx}$ and $g(x) = \sum d_t e^{itx}$. Substitute for f and g and integrate to find the coefficients q_n in this convolution:

$$h(x) = \int_0^{2\pi} f(t) g(x-t) dt = \int_0^{2\pi} f(x-t) g(t) dt = \sum q_n e^{inx}.$$

(b) Compute the coefficients c_k for the function

$$f(x) = \begin{cases} 1 & \text{for } 0 \leq x \leq 1 \\ 0 & \text{for } 1 \leq x \leq 2\pi \end{cases}$$

What is the decay rate of these c_k? What is $\sum |c_k|^2$?

(c) Keep that $f(x)$ in parts (c)–(d). If $g(x)$ also has a jump, will the convolution $h(x)$ have a jump? Compare the decay rates of the d’s and q’s to find the behavior of $h(x)$: delta function, jump, corner, or what?

(d) Find the derivative dh/dx at $x = 0$ in terms of two values of $g(x)$.

(You could take the x derivative in the convolution integral.)
2) (30 pts.) (a) We want to compute the cyclic convolution of \(f = (1, 0, 1, 0) \) and \(g = (1, 0, -1, 0) \) in two ways. First compute \(f \ast_C g \) directly—either the formula at the end of p. 294 or from \(1 + w^2 \) and \(1 - w^2 \).

(b) Now compute the discrete transforms \(c \) (from \(f \)) and \(d \) (from \(g \)). Then use the convolution rule to find \(f \ast_C g \).

(c) I notice that the usual dot product \(\overline{f}^T g \) is zero. Maybe also \(\overline{c}^T d \) is zero.

Question for any \(c \) and \(d \):

If \(\overline{c}^T d = 0 \) deduce that \(\overline{f}^T g = 0 \).
xx
3) \textbf{(30 pts.)} This question uses the Fourier integral to study

\[
-d^2u\over dx^2 + u(x) = \begin{cases} 1 & \text{for } -1 \leq x \leq 1 \\ 0 & \text{for } |x| > 1 \end{cases}
\]

(a) Take Fourier transforms of both sides to find a formula for \(\hat{u}(k) \).

(b) What is the decay rate of this \(\hat{u} \)? At what points \(x \) is the solution \(u(x) \) not totally smooth? Describe \(u(x) \) at those points: delta, jump in \(u(x) \), jump in \(du/dx \), jump in \(d^2u/dx^2 \), or what?

(c) We know that the Green’s function for this equation (when the right side is \(\delta(x) \)) is

\[
G(x) = \frac{1}{2}e^{-|x|} = \begin{cases} \frac{1}{2}e^{-x} & \text{for } x \geq 0 \\ \frac{1}{2}e^x & \text{for } x \leq 0 \end{cases}
\]

Find the solution \(u(x) \) at the particular point \(x = 2 \).