1. What is a dynamical system?
 1.1. Any system that changes over time
 a) Continual: Orbits
 b) Discrete: Compound Interest

2. Iteration: A process that is repeated over and over again.
 a) The output is sent back into the function as the new input
 b) Notation: The n-th iteration is written as $F^n(x)$

2.2. Example 1: For compounding interest at a rate of 10% per year:
 $A_0 = 100$
 $A_1 = 110$
 $A_2 = 121$
 $A_3 =$
 a) Can be modeled by an iteration $I(x) = 1.1x$
 $A_0 = 100$
 $A_1 = I(100) = 1.1*100 = 110$
 $A_2 = I(121) = I(I(100)) = 121$
 $A_3 = I^3(A)$
 b) Can be evaluated in general using $A_n = (1.1)^n A$

2.3. Example 2: Finding Square Roots:
 a) Need an algorithm. To find \sqrt{n}:
 1) Make a guess x
 2) Average x and n/x
 3) Use the result as your new guess
 4) Repeat until guess is good enough
 b) Proof of Method:
 Given $x, n > 0$, we have two cases:
 Case 1: $\sqrt{n} < x$
 Case 2: $\sqrt{n} > x$
 $n < x \sqrt{n}$
 $n > x \sqrt{n}$
 $n/x < \sqrt{n}$
 $n/x > \sqrt{n}$

 In either case, \sqrt{n} is between n and n/G, so by averaging, we narrow the range
 in which \sqrt{n} can lie.
c) For n=10 and an initial guess x=1

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Guess</th>
<th>Guess^2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>5.5</td>
<td>30.25</td>
<td>3.6509</td>
</tr>
<tr>
<td>3</td>
<td>3.6509</td>
<td>13.3889</td>
<td>3.30493</td>
</tr>
<tr>
<td>4</td>
<td>3.30493</td>
<td>10.9226</td>
<td>3.16536</td>
</tr>
<tr>
<td>5</td>
<td>3.16536</td>
<td>10.0195</td>
<td></td>
</tr>
</tbody>
</table>

2.4. Changing from continuous to discrete:
 a) Continually-compounded Interest:
 \[A(t) = A_0e^{kt} \] [t= time in years] \(\implies \ A_n = A_0e^{kn} \) [n= # of years]
 - Changed from continuous with an iteration \(I(x) = (e^k)x \)
 b) Planetary Orbits
 - Draw an imaginary plane in space and look at the points where the orbit intersects the plane
 c) Gains some simplicity at the expense of some information
 - Discrete, instead of continuous
 - No information about behavior in between iterations

3. Orbits:
 3.1. Informally - The outputs of an iteration listed in the order that they are achieved
 3.2. Formally – Given \(x_0 \in \mathbb{R} \), the orbit of \(x_0 \) under \(F \) is the sequence of points \(x_0, x_1, x_2 \) such that \(x_n = F^n(x_0) \)

 3.3. Useful things we can say about orbits:
 a) Limit as \(n \to \infty \)
 - \(S(x) \to \sqrt{n} \)
 b) Are there any patterns?

4. Types of Orbits:
 4.1. Fixed Points: **Definition**: \(F(x_0) = x_0 \), for some \(x_0 \)
 - If \(a=\sqrt{n} \), \(S(a)=a \)
 4.2. Periodic Orbits / Cycles: **Definition**: \(F^k(x_0) = x_0 \), for some \(k, x_0 \)
 - If \(F(x) = 5 - x \)
 \(F(5) = 0 \) \(F(0) = 5 \)
 - Called a 2-cycle
 b) Finding a k-cycle
 - Solve the equation \(F^k(x) = x \)
 - If \(F \) is a quadratic function, this has degree \(2^k \). In general, that is impossible to solve exactly.
 c) Note that if \(F \) has a k-cycle, then it has cycles of length nk, for all integers n
• $F^{3k}(x_0) = F^k(F^{2k}(x_0)) = F^{2k}(x_0) = \ldots = x_0$
• Prime Period: $n=1$

4.3. Eventually Fixed: **Definition:** $F^k(x_0) = x^*$, for all k sufficiently large
 a) $F(x) = x^2 - 1$, $x_0 = (\sqrt{5} + 1)/2$
 $(\sqrt{5} + 1)/2, 0, 0, 0, \ldots$

4.4. Eventually Periodic: **Definition:** $F^m(x_0) = F^n(x_0)$, for some m,n greater than 1
 a) $F(x) = x^2 - 1$, $x_0 = \sqrt{\sqrt{2} + 1}$
 $\sqrt{\sqrt{2} + 1}, \sqrt{2}, 1, 0, -1, 0, -1, 0, \ldots$

5. Computers
 5.1. Uses:
 a) Visualizing orbits
 b) Approximating values:
 • solving $F(x)=x$
 • finding square roots
 5.2. Shortfalls:
 a) Rounding Errors!
 • Table on page 23
 • If x is close enough to zero, the computer will round to zero, and the orbit will become fixed, instead of remaining chaotic like it should.