18.100A Fall 2012: Assignment 21

The rules are the same as for previous assignments.

Reading Mon.: 24.1-24.5 The Euclidean and uniform distances (norms) on \mathbb{R}^2.

Sequences in \mathbb{R}^2, limits, continuous functions on \mathbb{R}^2, Sequential Continuity theorem.

1. (1) In the app YouDraw, the mode Manhattan-Skyline allows only continuous paths traced out by a point moving in an x-y coordinate system, so that its motion is always in the horizontal or vertical direction – i.e., any change of direction is made by a right angle turn.

 (i) Write down a suitable definition in x-y coordinates for the MS-norm $|||\ |\ |\ |\ |$, which gives the length of any of the shortest admissible paths connecting $\mathbf{0}$ and \mathbf{x}.

 Draw the δ-neighborhood of $\mathbf{0}$ in this norm: $\Delta(0, \delta) = \{ \mathbf{x} \in \mathbb{R}^2 : \ |\ |\ |\ |\mathbf{x}|| < \delta \}$.

 (ii) Prove that $|||\ |\ |\ |\ |$ satisfies the triangle inequality.

2. (2) Two norms $||_{\mathbf{1}}$ and $||_{\mathbf{2}}$ in \mathbb{R}^2 are called equivalent if there are positive constants c and d such that $|\mathbf{x}|_1 \leq c|\mathbf{x}|_2$ and $|\mathbf{x}|_2 \leq d|\mathbf{x}|_1$, for all $\mathbf{x} \in \mathbb{R}^2$.

 a) Prove that in \mathbb{R}^2 the Euclidean norm $||\ |\ |$ and the uniform norm $||\ |\ |$ are equivalent.

 If two norms are equivalent, then they give the same results when used in definitions or proofs, for example in defining the limit of a sequence, or the continuity of a function $f(x)$ at a point \mathbf{x}_0. Two exercises illustrate this: 24.2/3 ($\lim x_n$) and 24.4/2 (continuity of $f(x)$).

 b) Work 24.2/3, to show that a sequence \mathbf{x}_n is convergent in the Euclidean norm if and only if it is convergent in the uniform norm.

3. (2) Work 24.2/2 to see what convergence of a sequence in the plane looks like.

 The output should be a drawing of \mathcal{D}, with the subregions clearly marked, and arrows on them indicating which limit the points in that subregion are tending to as $n \to \infty$. Pay particular attention to the regions on the boundary of \mathcal{D}.

4. (3: 1, 2)

 a) Read the proof of the Bolzano-Weierstrass Theorem for \mathbb{R}^2 (Theorem 24.2C), using coordinate-wise convergence, and then answer Question 24.2/4, if possible without consulting the solution.

 b) Prove the theorem by the bisection method: assume the given sequence lies within the box $B(\mathbf{0}, K)$, divide the box into equal quarters by a horizontal and a vertical line, and tell which quarter to select the first point \mathbf{x}_{n_1} from.

 Then subdivide similarly this selected quarter, and tell how to select the next point \mathbf{x}_{n_2} (be careful).

 Continuing, you may assume there is only one point \mathbf{a} inside all of the successively chosen nested squares. Indicate why your subsequence \mathbf{x}_{n_i} actually is a subsequence, and prove it converges to \mathbf{a}.

5. Work 24.5/5, as a good example of how the sequential continuity theorem in \mathbb{R}^2 is used. Give a direct argument using limits; base your argument on the ideas in 24.1-5, without using compactness; we will save that for the next assignment.