18.100B Problem Set 3 Solutions
Sawyer Tabony

1) We begin by defining $d : V \times V \rightarrow \mathbb{R}$ such that $d(x, y) = \|x - y\|$. Now to show that this function satisfies the definition of a metric. $d(x, y) = \|x - y\| \geq 0$ and

$$d(x, y) = 0 \iff \|x - y\| = 0 \iff x - y = 0 \iff x = y$$

So the function is positive definite.

$$d(x, y) = \|x - y\| = \| - 1(y - x)\| = -1\|y - x\| = \|y - x\| = d(y, x)$$

Thus the function is symmetric. Finally,

$$d(x, z) = \|x - z\| = \|x - y + y - z\| \leq \|x - y\| + \|y - z\| = d(x, y) + d(y, z)$$

So the triangle inequality holds. Therefore d is a metric.

2) Once again we must verify the properties of a metric. We have defined d_1 as

$$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$$

Since d is a metric, it only takes nonnegative values, so d_1 cannot be negative. $d_1(x, y)$ is zero exactly when $d(x, y)$ is, so only for $x = y$. Therefore d_1 is positive definite. Since d is symmetric, d_1 obviously inherits this property. Finally, for $x, y, z \in M$

$$d_1(x, y) + d_1(y, z) = \frac{d(x, y)}{1 + d(x, y)} + \frac{d(y, z)}{1 + d(y, z)} = \frac{d(x, y) + d(y, z) + 2d(x, y)d(y, z)}{1 + d(x, y) + d(y, z) + d(x, y)d(y, z)}$$

$$\geq \frac{1}{1 + d(x, y) + d(y, z) + d(x, y)d(y, z)} \geq 1 - \frac{1}{1 + d(x, z) + d(x, y)d(y, z)} = \frac{d(x, z)}{1 + d(x, z)} = d_1(x, z)$$

So the triangle inequality holds, thus we have a metric. It is easy to see that this metric never takes on a value larger than 1, since $d(x, y) < 1 + d(x, y)$, so under the metric d_1, M is bounded.

3) a) $A, B \subseteq M, M$ a metric space. Suppose $x \in A^o \cup B^o$. Without loss of generality, say $x \in A^o$.

Therefore x is an interior point of A, so $\exists \varepsilon_1 > 0$ such that the ball of radius ε centered at x is contained in A, or $B_{\varepsilon}(x) \subseteq A$. Since $A \subseteq A \cup B$,

$$B_{\varepsilon}(x) \subseteq A \cup B \implies x \in (A \cup B)^o$$

This shows that $A^o \cup B^o \subseteq (A \cup B)^o$.

b) Now let $x \in A^o \cap B^o$. Therefore $x \in A^o$, so x is an interior point of A, hence $\exists \varepsilon_1 > 0$ such that $B_{\varepsilon_1}(x) \subseteq A$. Similarly, $x \in B^o \implies \exists \varepsilon_2 > 0$ such that $B_{\varepsilon_2}(x) \subseteq B$. Let $\delta = \min(\varepsilon_1, \varepsilon_2)$. By the triangle inequality,

$$\delta \leq \varepsilon_1 \implies B_{\delta}(x) \subseteq B_{\varepsilon_1}(x) \Rightarrow B_{\delta}(x) \subseteq A$$

Therefore $B_{\delta}(x) \subseteq A \cap B$, so x is an interior point of $A \cap B$. Hence $A^o \cap B^o \subseteq (A \cap B)^o$.

Let \(x \in (A \cap B)^\circ \). So \(\exists \varepsilon > 0 \) with \(B_\varepsilon(x) \subseteq A \cap B \). Therefore \(B_\varepsilon(x) \subseteq A \) so \(x \in A^\circ \), and similarly \(x \in B^\circ \). So \(x \in A^\circ \cap B^\circ \). Thus \((A \cap B)^\circ \subseteq A^\circ \cap B^\circ \). So these two sets are equal.

Let \(A = (-1, 0) \) and \(B = [0, 1) \). Then 0 is an interior point of neither \(A \) nor \(B \), so \(0 \notin A^\circ \cup B^\circ \). But \(A \cup B = (-1, 1) \), so \(0 \in (A \cup B)^\circ \). Therefore in this instance the two sets are unequal.

4) a) If \(x \in \partial A \) then every ball around \(x \) intersects \(A \) and \(A^c \). Thus \(x \in A \) and \(x \) is a limit point of \(A^c \) or \(x \in A^c \) and \(x \) is a limit point of \(A \). Either way, \(x \in A \cap A^\circ \), and hence \(\partial A \subseteq A \cap A^\circ \).

Now let \(x \in \overline{A} \cap \overline{A^c} \). Since \(x \in \overline{A} \), either \(x \in A \) or \(x \) is a limit point of \(A \), and in both cases any open ball around \(x \) intersects \(A \). Similarly, \(x \in \overline{A^c} \) implies any open ball around \(x \) intersects \(A^c \). Therefore \(x \in \partial A \), so \(\overline{A} \cap \overline{A^c} \subseteq \partial A \). So these two sets are equal.

b) Let \(p \in \partial A \). By a), \(p \in \overline{A} \). Suppose \(p \in A^\circ \) then \(\exists \varepsilon > 0 \) such that \(B_\varepsilon(p) \subseteq A \). But this is an open ball centered at \(p \) which does not intersect \(A^c \), so \(p \notin \partial A \). This contradiction implies that \(p \notin A^\circ \).

Now suppose \(p \in \overline{A} \setminus A^\circ \). For any \(\varepsilon > 0 \), \(p \in \overline{A} \) gives that \(B_\varepsilon(x) \) intersects \(A \), and \(p \notin A^\circ \) implies that \(B_\varepsilon(x) \notin A \), so \(B_\varepsilon(x) \) intersects \(A^c \). So \(p \in \partial A \), and this shows that \(\partial A = \overline{A} \setminus A^\circ \).

c) By a), \(\partial A \) can be written as the intersection of two closed sets. Thus \(\partial A \) is closed.

d) Suppose \(A \) is closed. Then \(\overline{A} = A \), so by a)

\[
\partial A = \overline{A} \cap \overline{A^c} = A \cap \overline{A^c} \subseteq A
\]

Conversely, note that for any set \(B \), if \(x \notin B \) and \(x \notin \partial B \), then there is a positive \(r > 0 \) such that \(B_r(x) \subseteq B^c \) and hence \(x \notin \overline{B} \). This implies that

\[
\text{for any set } B, \overline{B} \subseteq B \cup \partial B.
\]

So if \(\partial A \subseteq A \), then \(\overline{A} \subseteq A \cup \partial A = A \subseteq \overline{A} \) i.e., \(A = \overline{A} \) hence \(A \) is closed.

5) We will show that \(S_r(x) := \{y : d(x, y) = r\} \) is the boundary of \(B_r(x) \). It will follow from the previous exercise that

\[
\overline{B_r(x)} = \partial B_r(x) \cup B_r(x) = \{y : d(x, y) \leq r\}.
\]

It is clear that if \(y \) is such that \(d(x, y) = r \) then \(y \in \partial B_r(x) \) since any ball around \(y \) will have points that are closer to \(x \) and points that are further away. We just have to show that if \(d(x, y) \neq r \), then \(y \) is not in \(\partial B_r(x) \).

But if \(d(x, y) < r \) then for any \(0 < \varepsilon < r - d(x, y) \) the ball of radius \(\varepsilon \) around \(y \) is all inside \(B_r(x) \) and \(y \notin \partial B_r(x) \); and if \(d(x, y) > r \) then for any \(0 < \delta < d(x, y) - r \) the ball of radius \(\delta \) around \(y \) is all outside of \(B_r(x) \) so that again \(y \notin \partial B_r(x) \). Thus \(\partial B_r(x) \) is precisely \(S_r(x) \) and we are done.

Here is an example of a different metric space where this result is not true: Consider \(\mathbb{R}^n \) with the discrete metric,

\[
\tilde{d}(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}
\]
and the ball around any point \(p \) with radius 1:

\[
B_1(p) = \{ q : \tilde{d}(p, q) < 1 \} = \{ p \}, \quad \text{while} \quad \{ q : \tilde{d}(p, q) \leq 1 \} = \mathbb{R}^n.
\]

Notice that the open ball is finite and hence closed. In particular, the closure of \(B_1(p) \) is just \{\(p \)\} and not \{\(q : \tilde{d}(p, q) \leq 1 \)\}.

6) We need to show that \(K \) is compact or that every open cover of \(K \) contains a finite subcover. Let \(\{ U_\alpha \}_{\alpha \in A} \) be an open cover of \(K \), so

\[
K = \{ 0, 1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots \} \subseteq \bigcup_{\alpha \in A} U_\alpha \implies \exists \alpha_0 \in A \text{ such that } 0 \in U_{\alpha_0}
\]

Since \(U_{\alpha_0} \) is open, \(\exists \varepsilon > 0 \) with \(B_\varepsilon(0) \subseteq U_{\alpha_0} \). Because \(\varepsilon > 0 \), there exists an \(N \in \mathbb{N} \) such that \(n > N \implies \frac{1}{n} < \varepsilon \). Hence the open set \(U_{\alpha_0} \) contains all of \(\{ \frac{1}{n} \} \) with \(n > N \), i.e., it contains all but finitely many elements of \(K \).

Now, for \(i = 1, 2, \ldots, N, \frac{1}{i} \in K \). So \(\exists \alpha_i \in A \) such that \(\frac{1}{i} \in U_{\alpha_i} \). So we have shown that

\[
K \subseteq \bigcup_{i=0}^{N} U_{\alpha_i},
\]

a finite subcover of \(\{ U_\alpha \}_{\alpha \in A} \). So every open cover of \(K \) contains a finite subcover, which shows that \(K \) is compact.

7) We have \(\{ U_\alpha \}_{\alpha \in A} \) an open cover of \(K \). Define

\[
V_{\alpha, n} = \{ x \in U_\alpha | B_{\frac{1}{n}}(x) \subseteq U_\alpha \}^0 \quad \text{for all } \alpha \in A, n \in \mathbb{N}.
\]

The \(U_\alpha \) are open, so for any point \(x \in U_\alpha \), there is some \(n \in \mathbb{N} \) such that

\[
B_{\frac{1}{n}}(x) \subseteq U_\alpha \implies B_{\frac{1}{n}}(x) \subseteq \{ y \in U_\alpha | B_{\frac{1}{n}}(y) \subseteq U_\alpha \} = x \in V_{\alpha, n}. \quad \text{Hence } \bigcup_{n \in \mathbb{N}} V_{\alpha, n} = U_\alpha.
\]

So taking the union over all \(\alpha \in A \), we have

\[
\bigcup_{\alpha \in A} \bigcup_{n \in \mathbb{N}} V_{\alpha, n} = \bigcup_{\alpha \in A} U_\alpha \supseteq K.
\]

So \(\{ V_{\alpha, n} \}_{n \in \mathbb{N}} \) is an open cover of \(K \) (each set is an interior, thus open). By the compactness of \(K \), there exists a finite subcover \(\{ V_{\alpha_i, n_i} \}_{i=1}^{N} \). Let \(\delta = \left(\max_{1 \leq i \leq N} n_i \right)^{-1} \). Then \(\forall x \in K, \exists \nu' \in \{ 1, 2, \ldots, n \} \) with

\[
x \in V_{\alpha_{i'}, n_{i'}} \implies B_{\frac{1}{n_{i'}}}(x) \subseteq U_{\alpha_{i'}}.
\]

Since \(\delta^{-1} = \max_{1 \leq i \leq N} n_i \geq n_{i'} \), we have \(\delta \leq \frac{1}{n_{i'}} \), so \(B_\delta(x) \subseteq B_{\frac{1}{n_{i'}}} \subseteq U_{\alpha_{i'}} \). Thus our \(\delta \) has the prescribed property.