Problems:

1) Let $f_n(x) = 1/(nx+1)$ and $g_n(x) = x/(nx+1)$ for $x \in (0, 1)$ and $n \in \mathbb{N}$. Prove that f_n converges pointwise but not uniformly on $(0, 1)$, and that g_n converges uniformly on $(0, 1)$.

2) Let $f_n(x) = x/(1 + nx^2)$ if $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Find the limit function f of the sequence (f_n) and the limit function g of the sequence (f'_n). Prove that $f'(x)$ exists for every x but that $f'(0) \neq g(0)$. For what values of x is $f'(x) = g(x)$? In what subintervals of \mathbb{R} does $f_n \to f$ uniformly? In what subintervals of \mathbb{R} does $f'_n \to g$ uniformly?

3) Let \mathcal{M} be a metric space and (f_n) a sequence of functions defined on a subset $E \subseteq \mathcal{M}$.

 We say that (f_n) is uniformly bounded if there exists a constant M such that $|f_n(x)| \leq M$ for every $n \in \mathbb{N}$ and $x \in E$.

 Prove that if (f_n) is a sequence of bounded real valued functions that converges uniformly to a function f, then (f_n) is uniformly bounded. Prove that in this case f is also bounded. If (f_n) is a sequence of bounded functions converging pointwise to f, need f be bounded?

4) Prove that if $f_n \to f$ uniformly and $g_n \to g$ uniformly on a set E then
 a) $f_n + g_n \to f + g$ uniformly on E.
 b) If each f_n and each g_n is bounded on E, prove that $f_n g_n \to fg$ uniformly.

5) Define two sequences (f_n) and (g_n) as follows:

 $$f_n(x) = x \left(1 + \frac{1}{n}\right) \quad \text{if} \quad x \in \mathbb{R}, \ n \geq 1$$

 $$g_n(x) = \begin{cases}
 \frac{1}{n} & \text{if } x = 0 \text{ or } x \text{ is irrational} \\
 q + \frac{1}{n} & \text{if } x \in \mathbb{Q} \text{ and } x = \frac{p}{q} \text{ in reduced form}
 \end{cases}$$

 Show that, on any interval $[a, b]$ both f_n and g_n converge uniformly, but $f_n g_n$ does not converge uniformly (cf. problem 4b).

6) Assume that (f_n) is a uniformly bounded sequence of functions converging uniformly to f on a set E, define M as in problem 3. Let g be continuous on $[-M, M]$, prove that $g \circ f_n \to g \circ f$ uniformly on E.

7) a) Show that the sequence of polynomials defined inductively by

 $$P_0(x) = 0$$

 $$P_{n+1}(x) = P_n(x) + \frac{1}{2} (x - P_n^2(x))$$

 converges uniformly on the interval $[0, 1]$ to the function $f(x) = \sqrt{x}$.

 b) Deduce that there exists a sequence of polynomials converging uniformly on $[-1, 1]$ to the function $f(x) = |x|$.

 Due Friday December 1, 2006 by 3 PM
Extra problems:
Some everywhere continuous, nowhere differentiable functions.
1) (John McCarthy) Consider the function \(g : \mathbb{R} \to \mathbb{R} \) satisfying \(g(x) = g(x + 4) \) for every \(x \), and
\[
g(x) = \begin{cases}
1 + x & \text{for } -2 \leq x \leq 0 \\
1 - x & \text{for } 0 \leq x \leq 2
\end{cases}
\]
and define
\[
f(x) = \sum_{n=1}^{\infty} 2^{-n} g(2^n x)
\]
Show that \(f \) is continuous. Show that \(f \) is nowhere differentiable as follows: Take \(\Delta x = \pm 2^{-2^k} \), choosing whichever sign makes \(x \) and \(x + \Delta x \) be on the same linear segment of \(g(2^k x) \). Show that
a) \(\Delta (2^n x) = 0 \) for \(n > k \), since \(g(2^n x) \) has period \(4 \cdot 2^{-2^n} \)
b) \(|\Delta g(2^k x)| = 1 \)
c) \(|\Delta \sum_{n=1}^{k-1} 2^{-n} g(2^n x)| \leq (k - 1) \max |\Delta g(2^n x)| \leq (k - 1) 2^{2k-1} 2^{-2^k} < 2^{k+2^{-k-1}} \)
Conclude that \(|\Delta f/\Delta x| \geq 2^{-k} 2^{2k} - 2^{k+2^{-k-1}} \) which goes to infinity with \(k \), and hence \(f \) is nowhere differentiable.

2) (Van der Waerden following Billingsley) Let \(a_0(x) \) denote the distance from \(x \) to the nearest integer, \(a_k(x) = 2^{-k} a_0(2^k x) \), and define
\[
f(x) = \sum a_k(x).
\]
a) Prove that \(f \) is everywhere continuous.
b) Prove that if a function \(h \) has a derivative at \(x \) and \(u_n \leq x \leq v_n \) are such that \(u_n < v_n \) and \(u_n - v_n \to 0 \) then
\[
\frac{h(v_n) - h(u_n)}{v_n - u_n} \to h'(x)
\]
c) Prove that \(f \) is nowhere differentiable as follows: Notice that if \(u \) is a dyadic number of order \(n \) (i.e., of the form \(\frac{i}{2^n} \) for some integer \(i \)) then \(2^k u \) is an integer for \(k \geq n \) and
\[
f(u) = \sum_{k=0}^{n-1} a_k(u).
\]
Fix \(x \) and let \(u_n, v_n \) be successive dyadics of order \(n \) (i.e., \(v_n - u_n = 2^{-n} \)) such that \(u_n \leq x < v_n \). Show that
\[
\frac{f(v_n) - f(u_n)}{v_n - u_n} = \sum_{k=0}^{n-1} \frac{a_k(v_n) - a_k(u_n)}{v_n - u_n}
\]
Show that each term on the right hand side is either a 1 or a \(-1\) and conclude that the left hand side can not converge to a finite limit.

For more examples, see the Related Resources section of the course.