18.100C Lecture 15 Summary

Theorem 15.1. Suppose that \(f \) and \(g \) are functions satisfying \(f(g(x)) = x \). Take a point \(p \) in the interior of the domain of definition of \(g \), and such that \(f(x) \) lies in the interior of the domain of definition of \(f \). Suppose that there is some \(\delta > 0 \) such that \(g \) is increasing on the interval \((p - \delta, p + \delta) \), and that \(g'(p) \) exists and is positive (alternatively, \(g \) could be strictly decreasing and \(g'(p) \) could be negative). Then \(f \) is differentiable at \(g(p) \), and

\[
f'(g(p)) = \frac{1}{g'(p)}.
\]

Only differentiability needs to be proved; the formula for the derivative then follows from the chain rule.

Example 15.2. \(f(x) = \log(x) \) is differentiable for all \(x > 0 \), and \(f'(x) = 1/x \).

Example 15.3. For any natural number \(n \), the function \(f(x) = x^{1/n} \) is differentiable for all \(x > 0 \), and \(f'(x) = (1/n)x^{1/n-1} \).

Definition of higher differentiability. The rest of this lecture is about forms of Taylor’s theorem.

Theorem 15.4. Suppose that \(f \) is \(m \) times differentiable at \(p \). Then one can write

\[
f(x) = f(p) + (x-p)f'(p) + \frac{(x-p)^2}{2}f''(p) + \cdots + \frac{(x-p)^m}{m!}f^{(m)}(p) + r(x)(x-p)^m,
\]

where \(\lim_{x \to p} r(x) = 0 \).

Equivalently:

Theorem 15.5. Suppose that \(f \) is \(m \) times differentiable at \(p \). Then for each \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that if \(|x-p| < \delta \), then

\[
\left| f(x) - f(p) - (x-p)f'(p) - \frac{(x-p)^2}{2}f''(p) - \cdots - \frac{(x-p)^m}{m!}f^{(m)}(p) \right| \leq \epsilon |x-p|^m.
\]

Theorem 15.6. Suppose that \(f \) is \(m \) times differentiable in the (closed) interval bounded by \(a \) and \(b \); that \(f^{(m)} \) is continuous in the same interval; and that \(f^{(m+1)} \) exists at all interior points of that interval. Then

\[
f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2}f''(a) + \cdots + \frac{(b-a)^m}{m!}f^{(m)}(a) + \frac{(b-a)^{m+1}}{(m+1)!}f^{(m+1)}(x)
\]

for some point \(x \) in the interior of the interval bounded by \(a \) and \(b \).