Lecture 2

1.6 Compactness

As usual, throughout this section we let \((X, d)\) be a metric space. We also remind you from last lecture we defined the open set

\[
U(x_0, \lambda) = \{x \in X : d(x, x_0) < \lambda\}. \tag{1.10}
\]

Remark. If \(U(x_0, \lambda) \subseteq U(x_1, \lambda_1)\), then \(\lambda_1 > d(x_0, x_1)\).

Remark. If \(A_i \subseteq U(x_0, \lambda_i)\) for \(i = 1, 2\), then \(A_1 \cup A_2 \subseteq U(x_0, \lambda_1 + \lambda_2)\).

Before we define compactness, we first define the notions of boundedness and covering.

Definition 1.19. A subset \(A\) of \(X\) is **bounded** if \(A \subseteq U(x_0, \lambda)\) for some \(\lambda\).

Definition 1.20. Let \(A \subseteq X\). A collection of subsets \(\{U_\alpha \subseteq X, \alpha \in I\}\) is a **cover** of \(A\) if

\[
A \subseteq \bigcup_{\alpha \in I} U_\alpha.
\]

Now we turn to the notion of compactness. First, we only consider compact sets as subsets of \(\mathbb{R}^n\).

For any subset \(A \subseteq \mathbb{R}^n\),

\[
A \text{ is compact} \iff A \text{ is closed and bounded}.
\]

The above statement holds true for \(\mathbb{R}^n\) but not for general metric spaces. To motivate the definition of compactness for the general case, we give the Heine-Borel Theorem.

Heine-Borel (H-B) Theorem. Let \(A \subseteq \mathbb{R}^n\) be compact and let \(\{U_\alpha, \alpha \in I\}\) be a cover of \(A\) by open sets. Then a finite number of \(U_\alpha\)'s already cover \(A\).

The property that a finite number of the \(U_\alpha\)'s cover \(A\) is called the Heine-Borel (H-B) property. So, the H-B Theorem can be restated as follows: If \(A\) is compact in \(\mathbb{R}^n\), then \(A\) has the H-B property.

Sketch of Proof. First, we check the H-B Theorem for some simple compact subsets of \(\mathbb{R}^n\). Consider rectangles \(Q = I_1 \times \cdots \times I_n \subset \mathbb{R}^n\), where \(I_k = [a_k, b_k]\) for each \(k\). Starting with one dimension, it can by shown by induction that these rectangles have the H-B property.

To prove the H-B theorem for general compact subsets, consider any closed and bounded (and therefore compact) subset \(A\) of \(\mathbb{R}^n\). Since \(A\) is bounded, there exists a rectangle \(Q\) such that \(A \subseteq Q\). Suppose that the collection of subsets \(\{U_\alpha, \alpha \in I\}\) is
an open cover of A. Then, define $U_o = \mathbb{R}^n - A$ and include U_o in the open cover. The rectangle Q has the H-B property and is covered by this new cover, so there exists a finite subcover covering Q. Furthermore, the rectangle Q contains A, so the finite subcover also covers A, proving the H-B Theorem for general compact subsets.

The following theorem further motivates the general definition for compactness.

Theorem 1.21. If $A \subseteq \mathbb{R}^n$ has the H-B property, then A is compact.

Sketch of Proof. We need to show that the H-B property implies A is bounded (which we leave as an exercise) and closed (which we prove here).

To show that A is closed, it is sufficient to show that A^c is open. Take any $x_o \in A^c$, and define

$$C_N = \{x \in \mathbb{R}^n : d(x, x_o) \leq 1/N\},$$

(1.11) and

$$U_N = C_N^c.$$

(1.12)

Then,

$$\bigcap C_N = \{x_o\}$$

(1.13)

and

$$\bigcup U_N = \mathbb{R}^n - \{x_o\}.$$

(1.14)

The U_N's cover A, so the H-B Theorem implies that there is a finite subcover $\{U_{N_1}, \ldots, U_{N_k}\}$ of A. We can take $N_1 < N_2 < \cdots < N_k$, so that $A \subseteq U_{N_k}$. By taking the complement, it follows that $C_{N_k} \subseteq A^c$. But $U(x_o, 1/N_k) \subseteq C_{N_k}$, so x_o is contained in an open subset of A^c. The above holds for any $x_o \in A^c$, so A^c is open.

Let us consider the above theorem for arbitrary metric space (X, d) and $A \subseteq X$.

Theorem 1.22. If $A \subseteq X$ has the H-B property, then A is closed and bounded.

Sketch of Proof. The proof is basically the same as for the previous theorem.

Unfortunately, the converse is not always true. Finally, we come to our general definition of compactness.

Definition 1.23. A subset $A \subseteq X$ is *compact* if it has the H-B property.

Compact sets have many useful properties, some of which we list here in the theorems that follow.

Theorem 1.24. Let (X, d_X) and (Y, d_Y) be metric spaces, and let $f : X \rightarrow Y$ be a continuous map. If A is a compact subset of X, then $f(A)$ is a compact subset of Y.

Proof. Let \(\{U_\alpha, \alpha \in I\} \) be an open covering of \(f(A) \). Each pre-image \(f^{-1}(U_\alpha) \) is open in \(X \), so \(\{f^{-1}(U_\alpha) : \alpha \in I\} \) is an open covering of \(A \). The H-B Theorem says that there is a finite subcover \(\{f^{-1}(U_\alpha) : 1 \leq i \leq N\} \). It follows that the collection \(\{U_\alpha : 1 \leq i \leq N\} \) covers \(f(A) \), so \(f(A) \) is compact. \(\square \)

A special case of the above theorem proves the following theorem.

Theorem 1.25. Let \(A \) be a compact subset of \(X \) and \(f : X \rightarrow \mathbb{R} \) be a continuous map. Then \(f \) has a maximum point on \(A \).

Proof. By the above theorem, \(f(A) \) is compact, which implies that \(f(a) \) is closed and bounded. Let \(a = \text{l.u.b.} f(A) \). The point \(a \) is in \(f(A) \) because \(f(A) \) is closed, so there exists an \(x_o \in A \) such that \(f(x_o) = a \). \(\square \)

Another useful property of compact sets involves the notion of uniform continuity.

Definition 1.26. Let \(f : X \rightarrow \mathbb{R} \) be a continuous function, and let \(A \) be a subset of \(X \). The map \(f \) is uniformly continuous on \(A \) if for every \(\epsilon > 0 \), there exists \(\delta > 0 \) such that
\[
d(x, y) < \delta \implies |f(x) - f(y)| < \epsilon,
\]
for all \(x, y \in A \).

Theorem 1.27. If \(f : X \rightarrow Y \) is continuous and \(A \) is a compact subset of \(X \), then \(f \) is uniformly continuous on \(A \).

Proof. Let \(p \in A \). There exists a \(\delta_p > 0 \) such that \(|f(x) - f(p)| < \epsilon/2 \) for all \(x \in U(p, \delta_p) \). Now, consider the collection of sets \(\{U(p, \delta_p/2) : p \in A\} \), which is an open cover of \(A \). The H-B Theorem says that there is a finite subcover \(\{U(p_i, \delta_{p_i}/2) : 1 \leq i \leq N\} \). Choose \(\delta \leq \min \delta_{p_i}/2 \). The following claim finishes the proof.

Claim. If \(d(x, y) < \delta \), then \(|f(x) - f(y)| < \epsilon \).

Proof. Given \(x \), choose \(p_i \) such that \(x \in U(p_i, \delta_{p_i}/2) \). So, \(d(p_i, x) < \delta_{p_i}/2 \) and \(d(x, y) < \delta < \delta_{p_i}/2 \). By the triangle inequality we conclude that \(d(p_i, y) < \delta_{p_i} \). This shows that \(x,y \in U(p_i, \delta_{p_i}) \), which implies that \(|f(x) - f(p_i)| < \epsilon/2 \) and \(|f(y) - f(p_i)| < \epsilon/2 \).

Finally, by the triangle inequality, \(|f(x) - f(y)| < \epsilon \), which proves our claim. \(\square \)

1.7 Connectedness

As usual, let \((X, d)\) be a metric space.

Definition 1.28. The metric space \((X, d)\) is connected if it is impossible to write \(X \) as a disjoint union \(X = U_1 \cup U_2 \) of non-empty open sets \(U_1 \) and \(U_2 \).
Note that disjoint simply means that \(U_1 \cap U_2 = \emptyset \), where \(\emptyset \) is the empty set.

A few simple examples of connected spaces are \(\mathbb{R}, \mathbb{R}^n \), and \(I = [a, b] \). The following theorem shows that a connected space gets mapped to a connected subspace by a continuous function.

Theorem 1.29. Given metric spaces \((X, d_X)\) and \((Y, d_Y)\), and a continuous map \(f : X \to Y \), it follows that

\[
X \text{ is connected} \implies f(X) \text{ is connected}.
\]

Proof. Suppose \(f(X) \) can be written as a union of open sets \(f(X) = U_1 \cup U_2 \) such that \(U_1 \cap U_2 = \emptyset \). Then \(X = f^{-1}(U_1) \cup f^{-1}(U_2) \) is a disjoint union of open sets. This contradicts that \(X \) is connected. \(\square \)

The intermediate-value theorem follows as a special case of the above theorem.

Intermediate-value Theorem. Let \((X, d)\) be connected and \(f : X \to \mathbb{R} \) be a continuous map. If \(a, b \in f(X) \) and \(a < r < b \), then \(r \in f(X) \).

Proof. Suppose \(r \notin f(X) \). Let \(A = (-\infty, r) \) and \(B = (r, \infty) \). Then \(X = f^{-1}(A) \cup f^{-1}(B) \) is a disjoint union of open sets, a contradiction. \(\square \)