Lecture 5

2.3 Chain Rule

Let U and V be open sets in \mathbb{R}^n. Consider maps $f : U \to V$ and $g : V \to \mathbb{R}^k$. Choose $a \in U$, and let $b = f(a)$. The composition $g \circ f : U \to \mathbb{R}^k$ is defined by $(g \circ f)(x) = g(f(x))$.

Theorem 2.9. If f is differentiable at a and g is differentiable at b, then $g \circ f$ is differentiable at a, and the derivative is

$$(Dg \circ f)(a) = (Dg)(b) \circ Df(a).$$

(2.43)

Proof. This proof follows the proof in Munkres by breaking the proof into steps.

- Step 1: Let $h \in \mathbb{R}^n - \{0\}$ and $h \neq 0$, by which we mean that h is very close to zero. Consider $\Delta(h) = f(a + h) - f(a) - Df(a)h$, which is continuous, and define

$$F(h) = \frac{f(a + h) - f(a) - Df(a)h}{|a|}.$$ \hspace{1cm} (2.44)

Then f is differentiable at a if and only if $F(h) \to 0$ as $h \to 0$.

$$F(h) = \frac{\Delta(h) - Df(a)h}{|h|},$$ \hspace{1cm} (2.45)

so

$$\Delta(h) = Df(a)h + |h|F(h).$$ \hspace{1cm} (2.46)

Lemma 2.10.

$$\frac{\Delta(h)}{|h|} \text{ is bounded.}$$ \hspace{1cm} (2.47)

Proof. Define

$$|Df(a)| = \sup_i \left| \frac{\partial f}{\partial x_i}(a) \right|,$$ \hspace{1cm} (2.48)

and note that

$$\frac{\partial f}{\partial x_i}(a) = Df(a)e_i,$$ \hspace{1cm} (2.49)

where the e_i are the standard basis vectors of \mathbb{R}^n. If $h = (h_1, \ldots, h_n)$, then $h = \sum h_i e_i$. So, we can write

$$Df(a)h = \sum h_i Df(a)e_i = \sum h_i \frac{\partial f}{\partial x_i}(a).$$ \hspace{1cm} (2.50)
It follows that
\[|Df(a)h| \leq \sum_{i=1}^{m} h_i \left| \frac{\partial f}{\partial x_i}(a) \right| \]
\[\leq m|h||Df(a)|. \tag{2.51} \]

By Equation 2.46,
\[|\Delta(h)| \leq m|h||Df(a)| + |h|F(h), \tag{2.52} \]
so
\[\frac{|\Delta(h)|}{|h|} \leq m|Df(a)| + F(h). \tag{2.53} \]

- Step 2: Remember that \(b = f(a) \), \(g : V \to \mathbb{R}^k \), and \(b \in V \). Let \(k=0 \). This means that \(k \in \mathbb{R}^n - \{0\} \) and that \(k \) is close to zero. Define
\[G(k) = \frac{g(b + k) - g(b) - (Dg)(b)k}{|k|}, \tag{2.54} \]
so that
\[g(b + k) - g(b) = Dg(b)k + |k|G(k). \tag{2.55} \]
We proceed to show that \(g \circ f \) is differentiable at \(a \).
\[g \circ f(a + h) - g \circ f(a) = g(f(a + h)) - g(f(a)) \]
\[= g(b + \Delta(h)) - g(b), \tag{2.56} \]
where \(f(a) = b \) and \(f(a + h) = f(a) + \Delta(h) = b + \Delta(h) \). Using Equation 2.55 we see that the above expression equals
\[Dg(b)\Delta(h) + |\Delta(h)|G(\Delta(h)). \tag{2.57} \]
Substituting in from Equation 2.46, we obtain
\[g \circ f(a + h) - g \circ f(a) = \ldots \]
\[= Dg(b)(Df(a)h + |h|F(h)) + \ldots \]
\[= Dg(b) \circ Df(a)h + |h|Dg(b)F(h) + |\Delta(h)|G(\Delta(h)) \tag{2.58} \]
This shows that
\[\frac{g \circ f(a + h) - g \circ f(a) - Dg(b) \circ Df(a)h}{|h|} = Dg(b)F(h) + \frac{\Delta(h)}{|h|}G(\Delta(h)). \tag{2.59} \]
We see in the above equation that \(g \circ f \) is differentiable at \(a \) if and only if the l.h.s. goes to zero as \(h \to 0 \). It suffices to show that the r.h.s. goes to zero as \(h \to 0 \), which it does: \(F(h) \to 0 \) as \(h \to 0 \) because \(f \) is differentiable at \(a \); \(G(\Delta(h)) \to 0 \) because \(g \) is differentiable at \(b \); and \(\Delta(h)/|h| \) is bounded.
We consider the same maps g and f as above, and we write out f in component form as $f = (f_1, \ldots, f_n)$ where each $f_i : U \to \mathbb{R}$. We say that f is a C^r map if each $f_i \in C^r(U)$. We associate $Df(x)$ with the matrix

$$Df(x) \sim \begin{bmatrix} \frac{\partial f_i}{\partial x_j} (x) \end{bmatrix}. \quad (2.60)$$

By definition, f is C^r (that is to say $f \in C^r(U)$) if and only if Df is C^{r-1}.

Theorem 2.11. If $f : U \to V \subseteq \mathbb{R}^n$ is a C^r map and $g : V \to \mathbb{R}^p$ is a C^r map, then $g \circ f : U \to \mathbb{R}^p$ is a C^r map.

Proof. We only prove the case $r = 1$ and leave the general case, which is inductive, to the student.

- Case $r = 1$:

$$Dg \circ f (x) = Dg(f(x)) \circ Df(x) \sim \begin{bmatrix} \frac{\partial g_i}{\partial x_j} f(x) \end{bmatrix}. \quad (2.61)$$

The map g is C^1, which implies that $\frac{\partial g_i}{\partial x_j}$ is continuous. Also,

$$Df(x) \sim \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix} \quad (2.62)$$

is continuous. It follows that $Dg \circ f (x)$ is continuous. Hence, $g \circ f$ is C^1.

\[\square \]

2.4 The Mean-value Theorem in n Dimensions

Theorem 2.12. Let U be an open subset of \mathbb{R}^n and $f : U \to \mathbb{R}$ a C^1 map. For $a \in U$, $h \in \mathbb{R}^n$, and $h \neq 0$,

$$f(a + h) - f(a) = Df(c)h, \quad (2.63)$$

where c is a point on the line segment $a + th, 0 \leq t \leq 1$, joining a to $a + h$.

Proof. Define a map $\phi : [0, 1] \to \mathbb{R}$ by $\phi(t) = f(a + th)$. The Mean Value Theorem implies that $\phi(1) - \phi(0) = \phi'(c) = (Df)(c)h$, where $0 < c < 1$. In the last step we used the chain rule.

\[\square \]
2.5 Inverse Function Theorem

Let U and V be open sets in \mathbb{R}^n, and let $f : U \rightarrow V$ be a C^1 map. Suppose there exists a map $g : V \rightarrow U$ that is the inverse map of f (which is also C^1). That is, $g(f(x)) = x$, or equivalently $g \circ f$ equals the identity map.

Using the chain rule, if $a \in U$ and $b = f(a)$, then

$$(Dg)(b) = \text{the inverse of } Df(a).$$

That is, $Dg(b) \circ Df(a)$ equals the identity map. So,

$$Dg(b) = (Df(a))^{-1}$$

However, this is not a trivial matter, since we do not know if the inverse exists. That is what the inverse function theorem is for: if $Df(a)$ is invertible, then g exists for some neighborhood of a in U and some neighborhood of $f(a)$ in V. We state this more precisely in the following lecture.