Lecture 25

Symplectic Hodge Theory

\((X^{2n}, \omega) \) be a compact symplectic manifold. From \(x \in X \) we get \(\omega_x \to B_x \) a non-degenerate bilinear form on \(T_x^* \), and so induces a non-degenerate bilinear from on \(\Lambda^p(T_x^*) \).

Define \(\langle \cdot, \cdot \rangle_{L^2} \) on \(\Omega^p \) as follows. Take \(\Omega = \omega^n/n! \), a symplectic volume form, \(\alpha, \beta \in \Omega^p \)

\[
\langle \alpha, \beta \rangle = \int_X B_x(\alpha, \beta) \Omega = \int_X \alpha \wedge \beta
\]

Remarks:

(a) In symplectic geometry \(*^2 = id \), \(* = *^{-1} \).
(b) \(\langle \cdot, \cdot \rangle \) is anti-symmetric on \(\Omega^p \), \(p \) odd and symmetric on \(\Omega^p \), \(p \) even.
(c) \([L^i, \delta^i] = d^i = \delta \). And \(\delta^i = (d^i)^t = -d \), so \([d, L^i] = \delta \).

Consider the Laplace operator \(\delta \delta = \delta d + \delta d \). Now, in the symplectic world, \(\Delta = 0 \). We'll prove this: \(\delta = [d, L^i] = dL^i - L^i d, \) so \(\delta \delta = -dL^i d \) and \(\delta d = dL^i, \) so \(\Delta = 0 \).

So for symplectic geometry we work with the bicomplex \((\Omega, d, \delta) \). We're going to use symplectic geometry to prove the Hard Lefshetz theorem for Kaehler manifolds.

Let \((X^{2n}, \omega) \) be a compact Kaehler manifold. Then we have the following operation in cohomology

\[
\gamma : H^p(X, \mathbb{C}) \to H^{p+2}(X) \quad c \mapsto [\omega] \sim c
\]

Theorem (Hard Lefshetz). \(\gamma^p \) is bijective.

Question: Is Hard Lefshetz true for compact symplectic manifolds. If not, when is it true.

Define \([L^i, L^j] = A \), by Kaehler-Weil says that \(A \alpha = (n - p) \alpha \).

Lemma. \([A, L^i] = 2L^i \).

Proof. \(AL^i \alpha - L^i A\alpha = (n - (p - 2))L^i \alpha - (n - p)L^i \alpha = 2L^i \alpha \)

Lemma. \([A, L] = -2L \).

There is another place in the world where you encounter these: Lie Groups.

Lie Groups

Take \(G = SL(2, \mathbb{R}) \), then consider the lie algebra \(\mathfrak{g} = sl(2, \mathbb{R}) \).

This is the algebra \(\{ A \in M_{22}(\mathbb{R}), tr A = 0 \} \). Generated by

\[
X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

Check that \([X, Y] = H, \ [H, X] = 2X \) and \([H, Y] = -2Y \), and \(sl(2, \mathbb{R}) = span\{X, Y, Z\} \), and the above describes the Lie Algebra structure.

\(\rho : \mathfrak{g} \to End(\Omega) \) be given by \(X \mapsto L^i, Y \mapsto L \) and \(H \mapsto A \) is a representation of the Lie algebra \(\mathfrak{g} \) on \(\Omega \). So \(\Omega \) is a \(\mathfrak{g} \)-module.

Lemma. \(\Omega_{harm} \) is a \(\mathfrak{g} \)-module of \(\Omega \).

Proof. First note that \(Ld = dL, \) i.e. \(dL\alpha = d(\omega \wedge \alpha) = \omega \wedge d\alpha = Ld\alpha \). Taking transposes we get \(L^i \delta = \delta L^i \).

Then take \(\alpha \in \Omega_{harm} \). We already know that \([d, L^i] = \delta \), so \(dL^i \alpha - L^i d\alpha = \delta \alpha \), which implies that \(dL^i \alpha = 0 \).

Similarly \(d\alpha, \delta \alpha = 0 \), so \(L\alpha, L^i \alpha \) are in \(\Omega_{harm} \).

So since \(A = [L, L^i], A\alpha \in \Omega_{harm} \) and \(\Omega \) is a \(\mathfrak{g} \)-module.
Note that Ω_{harm} is not finite dimensional. So these representations are not necessarily easy to deal with.

Definition. Let V be a \mathfrak{g}-module. V is of **finite H-type** if

$$V = \bigoplus_{i=1}^{N} V_i$$

and $H = \lambda_i \text{Id}$ on V_i.

In other words, H is in diagonal form with respect to this decomposition.

Example. $\Omega = \bigoplus_{p=0}^{2n} \Omega^p$, $H = (n - p) \text{Id}$ on Ω^p and $\Omega_{\text{harm}} = \bigoplus_{p=0}^{2n} \Omega^p_{\text{harm}}$, $H = (n - p) \text{Id}$ on Ω^p_{harm}.

Theorem. If V is a \mathfrak{g}-module of finite type, then every sub and quotient module is of finite type.

Proof. $V = \bigoplus_{i=1}^{N} V_i$, $H = \lambda_i \text{Id}$ on V_i. Let $\pi_i : V \to V_i$ be a projection onto V_i. Check that

$$\pi_i = \frac{1}{\prod_{i \neq j} (\lambda_i - \lambda_j)} \prod_{j \neq i} (H - \lambda_j)$$

i.e., $\pi_i v = v$ on v_i. So π_i takes sub/quotient objects onto themselves.