Lecture Five: The Cacciopoli Inequality

1 The Cacciopoli Inequality

The Cacciopoli (or Reverse Poincare) Inequality bounds similar terms to the Poincare inequalities studied last time, but the other way around. The statement is this.

Theorem 1.1 Let \(u : B_{2r} \to \mathbb{R} \) satisfy \(u \triangle u \geq 0 \). Then

\[
\int_{B_r} |\nabla u|^2 \leq \frac{4}{r^2} \int_{B_{2r}\setminus B_r} u^2.
\]

(1)

First prove a Lemma.

Lemma 1.2 If \(u : B_{2r} \to \mathbb{R} \) satisfies \(u \triangle u \geq 0 \), and \(\phi : B_{2r} \to \mathbb{R} \) is non-negative with \(\phi = 0 \) on \(\partial B_{2r} \), then

\[
\int_{B_{2r}} \phi^2 |\nabla u|^2 \leq 4 \int_{B_{2r}} |u|^2 |\nabla \phi|^2.
\]

(2)

Proof Consider

\[
0 \leq \int_{B_{2r}} \phi^2 u \triangle u.
\]

(3)

Clearly \(\int_{\partial B_{2r}} \phi^2 u \nabla u \cdot dS = 0 \), so apply Stokes’ theorem to get \(\int_{B_{2r}} \phi^2 u \triangle u + \int_{B_{2r}} \nabla (\phi^2 u) \cdot \nabla u = 0 \). From this

\[
0 \leq -\int_{B_{2r}} \nabla (\phi^2 u) \nabla u = -2 \int_{B_{2r}} \phi u \nabla \phi \cdot \nabla u - \int_{B_{2r}} \phi^2 |\nabla u|^2,
\]

(4)

and so

\[
\int_{B_{2r}} \phi^2 |\nabla u|^2 \leq -2 \int_{B_{2r}} \phi u \nabla \phi \nabla u \leq 2 \int_{B_{2r}} \phi |u| |\nabla \phi| |\nabla u|.
\]

(5)

(6)
Recall the inequality $\int fg \leq \left(\int f^2 \right)^{1/2} \left(\int g^2 \right)^{1/2}$ for any functions f and g (this is one form of the Cauchy-Schwarz inequality), and apply it above to get

$$\int_{B_{2r}} \phi^2 |\nabla u|^2 \leq 2 \left(\int_{B_{2r}} \phi^2 |\nabla u|^2 \right)^{1/2} \left(\int_{B_{2r}} |u|^2 |\nabla \phi|^2 \right)^{1/2}.$$ (7)

Dividing and squaring then gives

$$\int_{B_{2r}} \phi^2 |\nabla u|^2 \leq 4 \int_{B_{2r}} |u|^2 |\nabla \phi|^2.$$ (8)

To complete the proof of theorem 1.1 pick

$$\phi(x) = \begin{cases} 1 & \text{if } |x| \leq r; \\ \frac{2r-|x|}{r} & \text{if } r < x \leq 2r, \end{cases}$$

so $|\nabla \phi| = 0$ on B_r and $|\nabla \phi| = 1/r$ on $B_{2r} \setminus B_r$. Substitute this into the lemma to obtain the result, namely

$$\int_{B_r} |\nabla u|^2 \leq \frac{4}{r^2} \int_{B_{2r} \setminus B_r} u^2.$$ (9)

2 Applications of the Cacciopoli Inequality

2.1 Bounding the growth of a harmonic function

One nice consequence of the Cacciopoli Inequality is the following inequality bounding the rate at which a harmonic function can decay.

Proposition 2.1 There are strictly positive dimensional constants $k(n)$ such that

$$\int_{B_{2r}} u^2 \geq (1 + k(n)) \int_{B_r} u^2$$

for all harmonic functions $u : B_{2r} \to \mathbb{R}$.

Proof Let ϕ be a test function as before, and consider

$$\int_{B_{2r}} |\nabla (\phi u)|^2 = \int_{B_{2r}} |\phi \nabla u + u \nabla \phi|^2$$

$$= \int_{B_{2r}} \phi^2 |\nabla u|^2 + u^2 |\nabla \phi|^2 + 2u \phi \nabla \phi \cdot \nabla u.$$

Apply Cauchy-Schwarz and lemma 1.2 to get
\[
\int_{B_{2r}} |\nabla (\phi u)|^2 \leq \int_{B_{2r}} \phi^2 |\nabla u|^2 + \int_{B_{2r}} u^2 |\nabla \phi|^2 + 2 \left(\int_{B_{2r}} \phi^2 |\nabla u|^2 \right)^{1/2} \left(\int_{B_{2r}} u^2 |\nabla \phi|^2 \right)^{1/2}
\leq 2 \int_{B_{2r}} \phi^2 |\nabla u|^2 + 2 \int_{B_{2r}} u^2 |\nabla \phi|^2.
\leq 10 \int_{B_{2r}} u^2 |\nabla \phi|^2.
\]

Now make the same choice of \(\phi \) as before to give
\[
\int_{B_{2r}} |\nabla (\phi u)|^2 \leq \frac{10}{r^2} \int_{B_{2r} \setminus B_r} u^2
\] (11)

and apply Dirichlet-Poincare to the left hand side to get
\[
\frac{1}{C(n)r^2} \int_{B_{2r}} \phi^2 u^2 \leq \frac{10}{r^2} \int_{B_{2r} \setminus B_r} u^2.
\] (12)

Since \((\phi u)^2\) is a positive function we can reduce the area of the integration, therefore
\[
k(n) \int_{B_r} \phi^2 u^2 \leq \int_{B_{2r} \setminus B_r} u^2.
\] (13)

for \(k(n) = \frac{1}{10C(n)}\). Finally note that \(\phi = 1\) on \(B_r\), so
\[
k(n) \int_{B_r} u^2 \leq \int_{B_{2r} \setminus B_r} u^2,
\] (14)

and
\[
(1 + k(n)) \int_{B_r} u^2 \leq \int_{B_{2r}} u^2.
\] (15)

This completes the proof. \(\square\)

2.2 Bounding the growth of the energy of a harmonic function

We will now prove a similar inequality for the Dirichlet energy of a harmonic function.

Proposition 2.2 There are dimensional constants \(c(n)\) such that
\[
\int_{B_{2r}} |\nabla u|^2 \geq (1 + \theta(n)) \int_{B_r} |\nabla u|^2.
\] (16)

for all harmonic functions \(u : B_{2r} \rightarrow \mathbb{R}\).
Proof It suffices to show that

\[c(n) \int_{B_r} |\nabla u|^2 \leq \int_{B_{2r}\setminus B_r} |\nabla u|^2. \]

(17)

To do this we use two inequalities. Firstly we will state and use without proof the Neumann-Poincare inequality for an annulus, namely if \(A = \frac{1}{\text{vol}_{B_{2r}\setminus B_r}} \int_{B_{2r}\setminus B_r} u \) then

\[\int_{B_{2r}\setminus B_r} (u - A)^2 \leq d(n)r^2 \int_{B_{2r}\setminus B_r} |\nabla u|^2. \]

(18)

Secondly we use Cacciopoli, noting that if \(\Delta u = 0 \) then \(\Delta (u + A) = 0 \), and \(\nabla (u + A) = \nabla u \), to give

\[r^2 \int_{B_r} |\nabla u|^2 \leq 4 \int_{B_{2r}\setminus B_r} (u - A)^2. \]

(19)

Together (15) and (16) give

\[\frac{1}{4d(n)} \int_{B_r} |\nabla u|^2 \leq \int_{B_{2r}\setminus B_r} |\nabla u|^2 \]

(20)

as required. \[\blacksquare \]