Problem set 2: Due September 28

From Notes: Problems 6, 11, 12, 13, 14.

Problem 1 Show that the smallest σ-algebra containing the sets

$$(a, \infty) \subset [-\infty, \infty]$$

for all $a \in \mathbb{R}$, is what is called above the `Borel' σ-algebra on \((X, \mathcal{M}, \mu)\).

Problem 2 Let \((X, \mathcal{M}, \mu)\) be any measure space (so \(\mu\) is a measure on the σ-algebra \mathcal{M} of subsets of X). Show that the set of equivalence classes of μ-integrable functions on X, with the equivalence relation

$$f_1 \equiv f_2 \iff \mu(\{x \in X; f_1(x) \neq f_2(x)\}) = 0.$$

is a normed linear space with the usual linear structure and the norm given by

$$\|f\| = \int_X |f| d\mu.$$

Problem 3 Let \((X, \mathcal{M})\) be a set with a σ-algebra. Let $\mu : \mathcal{M} \rightarrow \mathbb{R}$ be a finite measure in the sense that $\mu(\emptyset) = 0$ and for any \(\{E_i\}_{i=1}^{\infty} \subset \mathcal{M} \) with $E_i \cap E_j = \emptyset$ for $i \neq j$,

$$\mu \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} \mu(E_i) \quad (1)$$

with the series on the right always absolutely convergent (i.e., this is part of the requirement on μ). Define

$$|\mu| (E) = \sup \sum_{i=1}^{\infty} |\mu(E_i)| \quad (2)$$

for $E \in \mathcal{M}$, with the supremum over all measurable decompositions $E = \bigcup_{i=1}^{\infty} E_i$ with E_i disjoint. Show that $|\mu|$ is a finite, positive measure.
Hint 1. You must show that
\[|\mu| (E) = \sum_{i=1}^{\infty} |\mu| (A_i) \quad \text{if} \quad \bigcup_{i} A_i = E, \quad A_i \in \mathcal{M} \]
being disjoint. Observe that if \(A_j = \bigcup_{i} A_{ji} \) is a measurable decomposition of \(A_j \) then together the \(A_{ji} \) give a decomposition of \(E \). Similarly, if \(A_{ji} = A_j \cap E_i \) is any such decomposition of \(E \) then gives such a decomposition of \(A_j \).

Problem 4 (Hahn Decomposition)

With assumptions as in Problem 3:

1. Show that \(\mu_+ = \frac{1}{2}(|\mu| + \mu) \) and \(\mu_- = \frac{1}{2}(|\mu| - \mu) \) are positive measures, \(\mu = \mu_+ - \mu_- \). Conclude that the definition of a measure in the notes based on (4.17) is the same as that in Problem 3.

2. Show that \(\mu_\pm \) so constructed are orthogonal in the sense that there is a set \(E \in \mathcal{M} \) \(\mu_- (E) = 0, \mu_+ (X \setminus E) = 0 \).

Hint. Use the definition of \(|\mu| \) to show that for any \(F \in \mathcal{M} \) and any \(\epsilon > 0 \) there is a subset \(F' \in \mathcal{M}, F' \subseteq F \) such that \(\mu_+ (F') \geq \mu_+ (F) - \epsilon \) and \(\mu_-(F') \leq \epsilon \) for some \(\delta > 0 \) and \(\epsilon = 2^{-n} \delta \).

Given apply this result repeatedly (say with to find a decreasing sequence of sets \(\mu_+ (F_n) \geq \mu_+ (F_{n-1}) - 2^{-n} \delta \) \(\mu_- (F_n) \leq 2^{-n} \delta \).

Now let be chosen this way with \(\delta = 1/m \).

Show that \(E = \bigcup_m G_m \) is as required.

Problem 5

Now suppose that \(\mu \) is a finite, positive Radon measure on a locally compact metric space \(X \) (meaning a finite positive Borel measure outer regular on Borel sets and inner regular on open sets). Show that \(\mu \) is inner regular on all Borel sets and hence, given \(\epsilon > 0 \) and
\(E \in B(X) \) with \(K \) compact and \(U \) open such that
\[
\mu(K) \geq \mu(E) - \epsilon \quad \mu(E) \geq \mu(U) - \epsilon
\]

Hint. First take \(U \) open, then use its inner regularity to find \(K \) with
\[K' \Subset U \]
and
\[\mu(K') \geq \mu(U) - \epsilon/2 \quad \mu(E \setminus K') \quad V \supset K' \setminus E \]

How big is \(K' \)? Find \(K = K' \setminus V \).