13. Homogeneous distributions

Next time I will talk about homogeneous distributions. On \mathbb{R} the functions

$$x_t^s = \begin{cases} x^s & x > 0 \\ 0 & x < 0 \end{cases}$$

where $S \in \mathbb{R}$, is locally integrable (and hence a tempered distribution) precisely when $S > -1$. As a function it is homogeneous of degree s. Thus if $a > 0$ then

$$(ax)^s_t = a^s x_t^s.$$

Thinking of $x_t^s = \mu_s$ as a distribution we can set this as

$$\mu_s(ax)(\varphi) = \int \mu_s(ax) \varphi(x) \, dx$$

$$= \int \mu_s(x) \varphi(x/a) \frac{dx}{a}$$

$$= a^s \mu_s(\varphi).$$

Thus if we define $\varphi_a(x) = \frac{1}{a} \varphi\left(\frac{x}{a}\right)$, for any $a > 0$, $\varphi \in \mathcal{S}(\mathbb{R})$ we can ask whether a distribution is homogeneous:

$$\mu(\varphi_a) = a^s \mu(\varphi) \forall \varphi \in \mathcal{S}(\mathbb{R}).$$