3. Measureability of functions

Suppose that \(\mathcal{M} \) is a \(\sigma \)-algebra on a set \(X \)\(^4\) and \(\mathcal{N} \) is a \(\sigma \)-algebra on another set \(Y \). A map \(f : X \to Y \) is said to be \emph{measurable} with respect to these given \(\sigma \)-algebras on \(X \) and \(Y \) if
\[
f^{-1}(E) \in \mathcal{M} \ \forall \ E \in \mathcal{N}.
\]
Notice how similar this is to one of the characterizations of continuity for maps between metric spaces in terms of open sets. Indeed this analogy yields a useful result.

Lemma 3.1. If \(G \subset \mathcal{N} \) generates \(\mathcal{N} \), in the sense that
\[
\mathcal{N} = \bigcap \{ \mathcal{N}'; \mathcal{N}' \supset G, \ \mathcal{N}' \text{ a } \sigma\text{-algebra} \}
\]
then \(f : X \to Y \) is measurable iff \(f^{-1}(A) \in \mathcal{M} \) for all \(A \in G \).

Proof. The main point to note here is that \(f^{-1} \) as a map on power sets, is very well behaved for any map. That is if \(f : X \to Y \) then \(f^{-1} : \mathcal{P}(Y) \to \mathcal{P}(X) \) satisfies:
\[
f^{-1}(E^c) = (f^{-1}(E))^c
\]
\[
f^{-1} \left(\bigcup_{j=1}^{\infty} E_j \right) = \bigcup_{j=1}^{\infty} f^{-1}(E_j)
\]
\[
f^{-1} \left(\bigcap_{j=1}^{\infty} E_j \right) = \bigcap_{j=1}^{\infty} f^{-1}(E_j)
\]
\[
f^{-1}(\phi) = \phi, \ f^{-1}(Y) = X.
\]
Putting these things together one sees that if \(\mathcal{M} \) is any \(\sigma \)-algebra on \(X \) then
\[
f_*(\mathcal{M}) = \{ E \subset Y; f^{-1}(E) \in \mathcal{M} \}
\]
is always a \(\sigma \)-algebra on \(Y \).

In particular if \(f^{-1}(A) \in \mathcal{M} \) for all \(A \in G \subset \mathcal{N} \) then \(f_*(\mathcal{M}) \) is a \(\sigma \)-algebra containing \(G \), hence containing \(\mathcal{N} \) by the generating condition. Thus \(f^{-1}(E) \in \mathcal{M} \) for all \(E \in \mathcal{N} \) so \(f \) is measurable. \(\square \)

Proposition 3.2. Any continuous map \(f : X \to Y \) between metric spaces is measurable with respect to the Borel \(\sigma \)-algebras on \(X \) and \(Y \).

\(^4\)Then \(X \), or if you want to be pedantic \((X, \mathcal{M})\), is often said to be a measure space or even a measurable space.
Proof. The continuity of f shows that $f^{-1}(E) \subset X$ is open if $E \subset Y$ is open. By definition, the open sets generate the Borel σ-algebra on Y so the preceding Lemma shows that f is Borel measurable i.e.,

$$f^{-1}(\mathcal{B}(Y)) \subset \mathcal{B}(X).$$

\[\square\]

We are mainly interested in functions on X. If \mathcal{M} is a σ-algebra on X then $f : X \to \mathbb{R}$ is measurable if it is measurable with respect to the Borel σ-algebra on \mathbb{R} and \mathcal{M} on X. More generally, for an extended function $f : X \to [-\infty, \infty]$ we take as the ‘Borel’ σ-algebra in $[-\infty, \infty]$ the smallest σ-algebra containing all open subsets of \mathbb{R} and all sets $(a, \infty]$ and $[-\infty, b)$; in fact it is generated by the sets $(a, \infty]$. (See Problem 6.)

Our main task is to define the integral of a measurable function: we start with simple functions. Observe that the characteristic function of a set

$$\chi_E = \begin{cases}
1 & x \in E \\
0 & x \notin E
\end{cases}$$

is measurable if and only if $E \in \mathcal{M}$. More generally a simple function,

$$f = \sum_{i=1}^{N} a_i \chi_{E_i}, \quad a_i \in \mathbb{R}$$

(3.5)

is measurable if the E_i are measurable. The presentation, (3.5), of a simple function is not unique. We can make it so, getting the minimal presentation, by insisting that all the a_i are non-zero and

$$E_i = \{x \in E; f(x) = a_i\}$$

then f in (3.5) is measurable iff all the E_i are measurable.

The Lebesgue integral is based on approximation of functions by simple functions, so it is important to show that this is possible.

Proposition 3.3. For any non-negative μ-measurable extended function $f : X \to [0, \infty]$ there is an increasing sequence f_n of simple measurable functions such that $\lim_{n \to \infty} f_n(x) = f(x)$ for each $x \in X$ and this limit is uniform on any measurable set on which f is finite.

Proof. Folland [1] page 45 has a nice proof. For each integer $n > 0$ and $0 \leq k \leq 2^n - 1$, set

$$E_{n,k} = \{x \in X; 2^{-n} k \leq f(x) < 2^{-n}(k + 1)\},$$

$$E'_n = \{x \in X; f(x) \geq 2^n\}.$$
These are measurable sets. On increasing \(n \) by one, the interval in the definition of \(E_{n,k} \) is divided into two. It follows that the sequence of simple functions

\[
(3.6) \quad f_n = \sum_k 2^{-n} k \chi_{E_{k,n}} + 2^n \chi_{E_n'}
\]

is increasing and has limit \(f \) and that this limit is uniform on any measurable set where \(f \) is finite. \(\Box \)