TOPICS: Domains of influence and dependence.
 Causality and uniqueness. Allowed boundary conditions.
 Examples.

Domain of definition and domain of dependence: where is the solution defined.
Implications for where conditions must be given:
 \(u_t + c(x)u_x = 0 \) in an interval \(a < x < b \).
Causality:
 If \(c(a) > 0 \), BC's needed at \(x = a \), and only then.
 If \(c(b) < 0 \), BC's needed at \(x = b \), and only then.
 Draw characteristics for various example \(c = c(x) \).
Generalize method of characteristics to other first order scalar eqn.:
--- Semilinear.
--- Quasilinear.

Domain of definition of solution does not depend on data for linear.
Semilinear
 Do example: \(xu_x + yu_y = u^2 \), with \(u(x, 1) = F(x) \)
 Domain of definition depends on \(F \) [solution blows up along characteristics when \(F \) not zero].
 Do example \(u_t + cu_x = u^2 \), with \(u(x, 0) = F(x) \).
 Solution not defined for all \(t > 0 \) along characteristics where \(F > 0 \).
Quasilinear
 Characteristics may cross, leading to multiple values.
 Start with \(u_t + c(u)u_x = 0 \) and \(u(x, 0) = F(x) \).
 Solutions by characteristics.
 Implicit form of the solutions.
 Crossing of characteristics.