Problem Set # 07. Due: Tuesday May 06.

IMPORTANT:
— Turn in the regular and the special problems stapled in two SEPARATE packages.
— Print your name in each page of your answers.
— In page one of each package print the names of the other members of your group.

Contents

1 Regular Problems. 2
 1.1 ExID55 statement: Directional derivatives and Taylor. 2
 1.2 Statement: TFPb06. Damped kinematic equation 2
 Solve an initial value problem for a damped kinematic wave equation. 2
 1.3 WaEq03 statement: String with both ends tied equivalent to periodic and odd. 3
 The solution of the wave equation with tied ends B.C. is the
 same as the solution to a problem with periodic and odd I.C. 3

2 Special Problems. 4
 2.1 ExPD09a statement: Potentials and stream-functions #01 4
 2.1.1 Introduction/background. 4
 2.1.2 Problem questions. 5
 2.2 ExPD22a statement: Laplace equation in a circle (Dirichlet). 6

3 Short notes on separation of variables. 7
 3.1 Example: heat equation in a square, with zero boundary conditions. 8
 3.2 Example: heat equation in a circle, with zero boundary conditions. 9
 3.3 Example: Laplace equation in a circle sector, with Dirichlet boundary
 conditions, non-zero on one side. 12
1 Regular Problems.

1.1 ExID55 statement: Directional derivatives and Taylor.

Do the tasks stated in items 1 and 2 below

1. Let \(\Gamma \) be a curve in the plane, \(\vec{r} = (x, y) \), parameterized by arc-length: \(x = X(s) \) and \(y = Y(s) \).
Assume that \(\frac{dY}{ds} < 0 \) along the curve, and that the curve is tangent to the unit circle for
\(s = 0 \), at the point \((x, y) = (1/\sqrt{2}, 1/\sqrt{2})\).
Calculate \(\frac{d\Phi}{ds} \) at \(s = 0 \), along the curve \(\Gamma \), for \(\Phi = \sin \left(\frac{\pi}{\sqrt{2}} x + \pi y^2 \right) \).

Correct answer required. “I only missed a sign”, or similar, excuses not allowed. Check your answer!

2. Let \(\Gamma \) be the straight line in the plane, \(\vec{r} = (x, y) \), given by \(x = 1 + t \) and \(y = t \), \(-\infty < t < \infty \).
Let \(\Phi = \Phi(\vec{r}) \) be some smooth scalar function. Define \(f = f(t) \) by \(f = \Phi \) along \(\Gamma \).
Write the first three terms of the Taylor expansion for \(f \) at \(t = 0 \), in terms of the partial
derivatives of \(\Phi \) at \(\vec{r}_0 = (1, 0) \). In particular, compute \(\dot{f}(0) \) and \(\ddot{f}(0) \) for \(\Phi = x^2 e^y \).

1.2 Statement: TFPb06. Damped kinematic equation.

Consider the following initial value problem

\[
\begin{align*}
p(x, 0) &= \begin{cases}
0 & \text{for } 0 < x, \\
1 + x & \text{for } -1 \leq x < 0, \\
0 & \text{for } x \leq -1,
\end{cases}
\end{align*}
\]

for the quasi-linear, first order, partial differential equation

\[
p_t - p p_x = -a p,
\]

where \(a > 0 \) is a constant, \(-\infty < x < \infty \), and \(t \geq 0 \).

a. There exists a value \(a_c \), such that: For \(a \geq a_c \) no shocks are needed in the solution of (1.1 –
1.2), while for \(a < a_c \) they are needed. What is the value \(a_c \)?
Hint: solve for the characteristic curves, and find when they cross, or not. What happens with the
characteristics that start at the origin, where the initial conditions have a discontinuity?

b. Compute (explicitly) the solution to (1.1 – 1.2) for \(a \geq a_c \), and calculate the limit

\[
\lim_{t \to \infty} e^{at} p(x, t) = \psi(x).
\]
c. Sketch a plot of $\psi = \psi(x)$ in (1.3).

d. What is the behavior of the solution, when $a \geq a_c$, for large times?

 Hint. Use the result from part b.

Can you explain how is it that the damping term is preventing the solution from breaking and developing shocks? A comparison of the answer here with that of part d in problem TFPb05 may prove useful in arriving at an answer.

e. Sketch the characteristics in an x–t diagram, for the cases $a > a_c$ and $a = a_c$.

1.3 WaEq03 statement:

String with both ends tied equivalent to periodic and odd.

Consider an elastic (homogeneous) string under tension, tied at both ends, started from some initial configuration. To simplify the situation, assume that all the motion is restricted to happen in a plane. After a proper adimensionalization, the situation can be modeled by the mathematical problem below for the wave equation in 1-D — where $u = u(x, t)$ is the displacement from equilibrium of the string:

$$u_{tt} - u_{xx} = 0 \quad \text{for} \quad 0 < x < \pi \quad \text{and} \quad t > 0,$$

(1.4)

with boundary conditions $u(0, t) = u(\pi, t) = 0$, and initial data

$$u(x, 0) = U(x) \quad \text{and} \quad u_t(x, 0) = V(x),$$

(1.5)

for some functions $U = U(x)$ and $V = V(x)$.

In another problem (WaEq02) is is shown that: The solution to (1.4 – 1.5) has the form

$$u(x, t) = f(t - x) - f(t + x),$$

for some function $f = f(\zeta)$, which is periodic of period 2π.

(1.6)

Vice-versa, it should be clear that any function of this form satisfies the problem in (1.4 – 1.5), with

$$U(x) = f(-x) - f(x) \quad \text{and} \quad V(x) = f'(-x) - f'(x),$$

(1.7)

where the primes are used to denote derivatives. Thus (1.4 – 1.5) and (1.6) are equivalent.

1 This formulation neglects dissipation in the string.

2 Notice that, as far as providing a solution to (1.4 – 1.5), $f = f(\zeta)$ needs to be defined for $\zeta > -\pi$ only. However, because of the periodicity, we can assume that it is defined everywhere.
Finally, notice that u — as defined by (1.6) — satisfies:

$$u \text{ is a solution to the wave equation in (1.4) which is both periodic, of period } 2\pi \text{ in } x, \text{ as well as an odd function of } x.$$ \hspace{1cm} (1.8)

Show that:

Let u satisfy (1.8). Then u satisfies a problem of the form (1.4 – 1.5). \hspace{1cm} (1.9)

It then follows that (1.8) and (1.4 – 1.5) are equivalent — note the following chain of implications given by the above arguments: (1.4 – 1.5) \iff (1.6) \implies (1.8) \implies (1.4 – 1.5). You are being asked to prove the last one of these — i.e., (1.9).

2 Special Problems.

2.1 ExPD09a statement: Potentials and stream-functions #01.

2.1.1 Introduction/background.

Consider a constant density, steady, smooth fluid flow in 2-D, with velocity components $u = u(x, y)$ (x-coordinate direction) and $v = v(x, y)$ (y-coordinate direction). Because the flow must conserve volume,

$$u_x + v_y = 0, \quad \text{for } \vec{r} = (x, y) \in \Omega,$$ \hspace{1cm} (2.10)

where Ω is the region where the flow is defined.\cite{footnote1} The question that we want to address here is:

When does the flow have a stream-function, defined in all of Ω? \hspace{1cm} (2.11)

The stream-function is a function $\psi = \psi(x, y)$ such that $\psi_x = -v$ and $\psi_y = u$. \hspace{1cm} (2.12)

Note that

1. If there is a stream-function in Ω, then it is defined up to a constant by (2.12).
 Proof: Let ϕ_1 and ϕ_2 be stream-functions. Then $(\phi_1 - \phi_2)_x = 0 = (\phi_1 - \phi_2)_y$. ♠

2. Let Γ be a curve such that $\psi = \text{constant on } \Gamma$. Then Γ is a stream-line.\cite{footnote2}
 Proof: Equation (2.12) guarantees that, at every point, $\nabla \psi$ is orthogonal to the flow vector. Hence the lines $\psi = \text{constant}$ are tangent to the flow vector. ♠

\footnote{\text{Here we assume that } Ω \text{ is connected.}}

\footnote{\text{This is the reason ψ is called a stream-function. A stream-line is the path that a fluid particle in the flow follows.}}
3. A flow field defined via a twice continuously differentiable stream-function satisfies (2.10). Proof: Follows from (2.12) and $\psi_{xy} = \psi_{yx}$. ♣

Thus (2.10) is a necessary condition for (2.11).

4. Assume that there is a stream-function defined in Ω, and let Γ be any closed curve in Ω. Then the fluid volume flow across Γ vanishes. That is:

$$\int_{\Gamma} \hat{n} \cdot \bar{u} \, ds = 0,$$

(2.13)

where \hat{n} is the normal unit vector along the curve Γ, $\bar{u} = (u, v)$ is the flow velocity vector, and s is the arc-length on Γ.

Proof: Let n_1 and n_2 be the components of \hat{n}. Then $\hat{n} \cdot \bar{u} = n_1 u + n_2 v = (-n_2) \psi_x + n_1 \psi_y = \hat{t} \cdot \nabla \psi$, where \hat{t} is the unit tangent along Γ. Hence $\hat{n} \cdot \bar{u} \, ds = \hat{t} \cdot \nabla \psi \, ds = d\psi$, and (since the integral is along a close curve) (2.13) follows. ♣

It turns out that (2.13) is not only necessary for (2.11), it is also sufficient. (2.14)

Proof: Assume that (2.13) applies for any closed curve Γ in Ω. Then select some fixed point $\vec{r}_* \in \Omega$, and define

$$\psi(\vec{r}) = \int_{\vec{r}_*}^{\vec{r}} (u \, dy - v \, dx),$$

(2.15)

where the integration is to be performed along any path in Ω from \vec{r}_* to \vec{r}. Because (2.13) applies, the integral does not depend on the path (can you tell why?), so that this gives a well defined function in Ω. Then this ψ satisfies (2.12) — can you prove this? ♣

2.1.2 Problem questions.

A. Show that: If the domain Ω is simply connected (that is, it has no holes), and (2.10) applies, then (2.13) is true for all closed curves in Ω. Hence, a stream function can be defined in Ω.

B. Let Ω be the set defined by $\vec{r} = \sqrt{x^2 + y^2} > 1$. Now consider flows in Ω of the form $u = -y \, f(r)$ and $v = x \, f(r)$, where $f \neq 0$ is continuously differentiable for $r \geq 1$.

1. Show that these flows satisfy (2.10).

2. Do these flows have a stream function in Ω?

 If so, give a simple formula for ψ. If not, prove it.

C. Let Ω be the set defined by $\vec{r} = \sqrt{x^2 + y^2} > 1$. Now consider flows in Ω of the form $u = x \, g(r)$ and $v = y \, g(r)$, where $g \neq 0$ is continuously differentiable for $r \geq 1$.

1. For which functions $g = g(r)$ do these flows satisfy (2.10).

2. If g is taken as in part 1, does the flow have a stream function in Ω?

 If so, give a simple formula for ψ. If not, prove it.
Note that Ω in A, and in B, is not simply connected.

2.2 ExPD22a statement: Laplace equation in a circle (Dirichlet).

Consider the question of determining the steady state temperature in a thin circular plate such that: (a) The temperature is prescribed at the edges of the plate, and (b) The facets of the plate (top and bottom) plate are insulated. This problem can be written, using polar coordinates, in the form:

$$\frac{1}{r^2} (r (r T_r)_r + T_{\theta\theta}) = \Delta T = 0, \quad \text{for } 0 \leq \theta \leq 2\pi \text{ and } 0 \leq r \leq 1,$$

(2.16)

with the boundary condition:

$$T(1, \theta) = h(\theta),$$

(2.17)

where $h = h(\theta)$ is some prescribed function. The solution to (2.16–2.17) can be written as a (possibly infinite) sum of separation of variables solutions.

Separation of variables solutions to (2.16–2.17) are product solutions of the form

$$T(r, \theta) = \phi(r) \psi(\theta),$$

(2.18)

where ϕ and ψ are some functions. In particular, from (2.17), it must be that

$$h(\theta) = \phi(1) \psi(\theta).$$

(2.19)

However, for the separated solutions, the function h is **NOT prescribed**: It is whatever the form in (2.18) allows. The general h is obtained by adding separation of variables solutions.

These are the tasks in this exercise:

1. Find **ALL** the separation of variables solutions.

2. In exercise ExPD04 we stated that all the solutions to the Laplace equation — i.e.: (2.16) — must have the form $T = f(x - iy) + g(x + iy)$, for some functions f and g. Note that these two functions must make sense for complex arguments, and have derivatives in terms of these complex arguments — which means that f and g must be analytic functions.

Show that the result in the paragraph above applies to all the separated solutions found in item 1. Namely: find the functions f and g that correspond to each separated solution. Notice that, in polar coordinates: $z = x + iy = r \cos \theta + i r \sin \theta = r e^{i\theta}$ and $\bar{z} = x - iy = r \cos \theta - i r \sin \theta = r e^{-i\theta}$.

5Here we use non-dimensional variables, selected so that the plate has radius 1.

6Of course, both T and h must be periodic of period 2π in θ.
3 Short notes on separation of variables.

Imagine that you are trying to solve a problem whose solution is a function of several variables, e.g.: \(u = u(x, y, z) \). Finding this solution directly may be very hard, but you may be able to find other solutions with the simpler structure

\[
u = f(x) g(y) h(z),
\]

where \(f, g, \) and \(h \) are some functions. This is called a separated variables solution.

If the problem that you are trying to solve is linear, and you can find enough solutions of the form in (3.20), then you may be able to solve the problem using a linear combinations of separated variables solutions.

The technique described in the paragraph above is called separation of variables. Note that

1. When the problem is a pde and solutions of the form in (3.20) are allowed, the pde reduces to three ode — one for each of \(f, g, \) and \(h \). Thus the solution process is enormously simplified.

2. In (3.20) all the three variables are separated. But it is also possible to seek for partially separated solutions. For example

\[
u = f(x) v(y, z).
\]

This is what happens when you look for normal mode solutions to time evolution equations of the form

\[
u_t = \mathcal{L} u,
\]

where \(\mathcal{L} \) is a linear operator acting on the space variables \(\vec{r} = (x, y, \ldots) \) only — for example: \(\mathcal{L} = \partial_x^2 + \partial_y^2 + \ldots \). The normal mode solutions have time separated

\[
u = e^{\lambda t}\phi(\vec{r}), \quad \text{where} \quad \lambda = \text{constant},
\]

and reduce the equation to an eigenvalue problem in space only

\[
\lambda \phi = \mathcal{L} \phi.
\]

3. Separation of variables does not always work. In fact, it rarely works if you just think of random problems. But it works for many problems of physical interest. For example: it works for the heat equation, but only for a few very symmetrical domains (rectangles, circles, cylinders, ellipses). But these are enough to build intuition as to how the equation works. Many properties valid for generic domains can be gleaned from the solutions in these domains.
4. Even if you cannot find enough separated solutions to write all the solutions as linear combinations of them, or if the problem is nonlinear and you can get just a few separated solutions, sometimes this is enough to discover interesting physical effects, or gain intuition as to the system behavior.

3.1 Example:
heat equation in a square, with zero boundary conditions.

Consider the problem
\[
T_t = \Delta T = T_{xx} + T_{yy},
\] (3.25)
in the square domain \(0 < x, y < \pi\), with \(T\) vanishing along the boundary, and with some initial data \(T(x, y, 0) = W(x, y)\). To solve this problem by separation of variables, we first look for solutions of the form
\[
T = f(t) g(x) h(y),
\] (3.26)

\textit{which satisfy the boundary conditions, but not the initial data. Why this? This is important!}

\textbf{A.} We would like to solve the problem for generic initial data, while solutions of the form (3.26) can only achieve initial data for which \(W = f(0) g(x) h(y)\). This is very restrictive, even more so because (as we will soon see) the functions \(g\) and \(h\) will be very special. To get generic initial data, we have no hope unless we use arbitrary linear combinations of solutions like (3.26).

\textbf{B.} Arbitrary linear combinations of solutions like (3.26) will satisfy the boundary conditions if an only if each of them satisfies them.

Substituting (3.26) into (3.25) yields
\[
f' g h = f g'' h + f g h'',
\] (3.27)

where the primes indicate derivatives with respect to the respective variables. Dividing this through by \(u\) now yields
\[
\frac{f'}{f} = \frac{g''}{g} + \frac{h''}{h}.
\] (3.28)

Since each of the terms in this last equation is a function of a different independent variable, the equation can be satisfied only if each term is a constant. Thus
\[
\frac{g''}{g} = c_1, \quad \frac{h''}{h} = c_2, \quad \text{and} \quad \frac{f'}{f} = c_1 + c_2,
\] (3.29)
where \(c_1 \) and \(c_2 \) are constants. Now the problem has been reduced to a set of three simple ode. Furthermore, for (3.26) to satisfy the boundary conditions in (3.25), we need:

\[
g(0) = g(\pi) = h(0) = h(\pi) = 0, \tag{3.30}
\]

which restricts the possible choices for the constants \(c_1 \) and \(c_2 \). The equations in (3.29 – 3.30) are easily solved, and yield\(^7\)

\[
g = \sin(nx), \quad \text{with} \quad c_1 = -n^2, \tag{3.31}
\]

\[
h = \sin(my), \quad \text{with} \quad c_2 = -m^2, \tag{3.32}
\]

\[
f = e^{-(n^2 + m^2)t}, \tag{3.33}
\]

where \(n = 1, 2, 3, \ldots \) and \(m = 1, 2, 3, \ldots \) are natural numbers. The solution to the problem in (3.25) can then be written in the form

\[
T = \sum_{n,m=1}^{\infty} w_{nm} \sin(nx) \sin(my) e^{-(n^2 + m^2)t}, \tag{3.34}
\]

where the coefficients \(w_{nm} \) follow from the double sine-Fourier series expansion (of the initial data)

\[
W = \sum_{n,m=1}^{\infty} w_{nm} \sin(nx) \sin(my). \tag{3.35}
\]

That is

\[
w_{nm} = \frac{4}{\pi^2} \int_{0}^{\pi} dx \int_{0}^{\pi} dy \, W(x, y) \sin(nx) \sin(my). \tag{3.36}
\]

3.2 Example:

Heat equation in a circle, with zero boundary conditions.

We now, again, consider the heat equation with zero boundary conditions, but on a circle instead of a square. That is, using polar coordinates, we want to solve the problem

\[
T_t = \nabla^2 T = \frac{1}{r^2} \left(r \left(\frac{\partial}{\partial r} r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial \theta^2} \right), \tag{3.37}
\]

for \(0 \leq r < 1 \), with \(T(1, \theta, t) = 0 \), and some initial data \(T(r, \theta, 0) = W(r, \theta) \). To solve the problem using separation of variables, we look for solutions of the form

\[
T = f(t) g(r) h(\theta), \tag{3.38}
\]

\(^7\)We set the arbitrary multiplicative constants in each of these solutions to one. Given (3.34 – 3.35), there is no loss of generality in this.
which satisfy the boundary conditions, but not the initial data. The reasons for this are the same as in items A and B above — see § 3.1. In addition, note that

C. We must use polar coordinates, otherwise solutions of the form (3.38) cannot satisfy the boundary conditions. This exemplifies an important feature of the separation of variables method: The separation must be done in a coordinate system where the boundaries are coordinate surfaces.

Substituting (3.38) into (3.37) yields

\[f' g h = \frac{1}{r^2} (f r (r g')' h + f g h'') , \tag{3.39} \]

where, as before, the primes indicate derivatives. Dividing this through by \(u \) yields

\[\frac{f'}{f} = \frac{(r g')'}{r g} + \frac{h''}{r^2 h} . \tag{3.40} \]

Since the left side in this equation is a function of time only, while the right side is a function of space only, the two sides must be equal to the same constant. Thus

\[f' = -\lambda f \tag{3.41} \]

and

\[\frac{r (r g')'}{g} + \lambda r^2 + \frac{h''}{h} = 0 , \tag{3.42} \]

where \(\lambda \) is a constant. Here, again, we have a situation involving two functions of different variables being equal. Hence

\[h'' = \mu h , \tag{3.43} \]

and

\[\frac{1}{r} (r g')' + \left(\lambda + \frac{\mu}{r^2} \right) g = 0 , \tag{3.44} \]

where \(\mu \) is another constant. The problem has now been reduced to a set of three ode. Furthermore, from the boundary conditions and the fact that \(\theta \) is the polar angle, we need:

\[g(1) = 0 \quad \text{and} \quad h \text{ is periodic of period } 2 \pi . \tag{3.45} \]

In addition, \(g \) must be non-singular at \(r = 0 \) — the singularity that appears for \(r = 0 \) in equation (3.44) is due to the coordinate system singularity, equation (3.37) is perfectly fine there.

It follows that it should be \(\mu = -n^2 \) and

\[h = e^{i n \theta} , \quad \text{where } n \text{ is an integer} . \tag{3.46} \]

Notes:
– As in § 3.1, here and below, we set the arbitrary multiplicative constants in each of the ode solutions to one. As before, there is no loss of generality in this.

– Instead of complex exponentials, the solutions to (3.43) could be written in terms of sine and cosines. But complex exponentials provide a more compact notation.

Then (3.44) takes the form

\[\frac{1}{r} (rg')' + \left(\lambda - \frac{n^2}{r^2} \right) g = 0. \tag{3.47} \]

This is a Bessel equation of integer order. The non-singular (at \(r = 0 \)) solutions of this equation are proportional to the Bessel function of the first kind \(J_n \). Thus we can write

\[g = J_n(\kappa_n r), \quad \text{and} \quad \lambda = \kappa_n^2, \tag{3.48} \]

where \(m = 1, 2, 3, \ldots \), and \(\kappa_n > 0 \) is the \(m \)-th zero of \(J_n \).

Remark 3.1 That (3.47) turns out to be a well known equation should not be a surprise. Bessel functions, and many other special functions, were first introduced in the context of problems like the one here — i.e., solving pde (such as the heat or Laplace equations) using separation of variables.

Putting it all together, we see that the solution to the problem in (3.37) can be written in the form

\[T = \sum_{n=-\infty}^{\infty} \sum_{m=1}^{\infty} w_{nm} J_n(\kappa_n r) \exp \left(i n \theta - \kappa_n^2 t \right), \tag{3.49} \]

where the coefficients \(w_{nm} \) follow from the double (Complex Fourier) – (Fourier – Bessel) expansion

\[W = \sum_{n=-\infty}^{\infty} \sum_{m=1}^{\infty} w_{nm} J_n(\kappa_n r) e^{i n \theta}. \tag{3.50} \]

That is:

\[w_{nm} = \frac{1}{\pi J_{n+1}^2(\kappa_n r)} \int_0^{2\pi} d\theta \int_0^1 r \, dr \, W(r, \theta) J_n(\kappa_n r) e^{-i n \theta}. \tag{3.51} \]

Remark 3.2 You may wonder how (3.51) arises. Here is a sketch:

(i) For \(\theta \) we use a Complex-Fourier series expansion. For any \(2\pi \)-periodic function

\[G(\theta) = \sum_{n=-\infty}^{\infty} a_n e^{i n \theta}, \quad \text{where} \quad a_n = \frac{1}{2\pi} \int_0^{2\pi} G(\theta) e^{-i n \theta} d\theta. \tag{3.52} \]
(ii) For \(r \) we use the Fourier-Bessel series expansion explained in item (iii).

(iii) Note that (3.47), for any fixed \(n \), is an eigenvalue problem in \(0 < r < 1 \). Namely

\[
\mathcal{L} g = \lambda g, \quad \text{where} \quad \mathcal{L} g = -\frac{1}{r} (r g')' + \frac{n^2}{r^2} g, \tag{3.53}
\]

\(g \) is regular for \(r = 0 \), and \(g(1) = 0 \). Without loss of generality, assume that \(n \geq 0 \), and consider the set of all the (real valued) functions such that \(\int_0^1 \tilde{g}^2(r) r \, dr < \infty \). Then define the scalar product

\[
\langle \tilde{f}, \tilde{g} \rangle = \int_0^1 \tilde{f}(r) \tilde{g}(r) r \, dr. \tag{3.54}
\]

With this scalar product \(\mathcal{L} \) is self-adjoint, and it yields a complete set of orthonormal eigenfunctions

\[
\phi_m = J_n(\kappa_{nm} r) \quad \text{and} \quad \lambda_m = \kappa_{nm}^2, \quad \text{where} \quad m = 1, 2, 3, \ldots \tag{3.55}
\]

Thus one can expand

\[
F(r) = \sum_{m=1}^{\infty} b_m \phi_m(r), \quad \text{where} \quad b_m = \frac{1}{\int_0^1 r \phi_m^2(r) \, dr} \int_0^1 F(r) \phi_m(r) r \, dr. \tag{3.56}
\]

Finally, note that

\[
\int_0^1 r \phi_m^2(r) \, dr \quad \text{follows from} \quad \int_0^1 r J_n^2(\kappa_{nm} r) \, dr = \frac{1}{2} J_{n+1}^2(\kappa_{nm}). \tag{3.57}
\]

We will not prove this identity here.

3.3 Example: Laplace equation in a circle sector, with Dirichlet boundary conditions, non-zero on one side.

Consider the problem

\[
0 = \Delta u = \frac{1}{r^2} (r(r u_r)_r + u_{\theta\theta}), \quad 0 < r < 1 \quad \text{and} \quad 0 < \theta < \alpha, \tag{3.58}
\]

where \(\alpha \) is a constant, with \(0 < \alpha < 2 \pi \). The boundary conditions are

\[
u(1, \theta) = 0, \quad u(r, 0) = 0, \quad \text{and} \quad u(r, \alpha) = w(r), \tag{3.59}
\]

for some given function \(w \). To solve the problem using separation of variables, we look for solutions of the form

\[
u = g(r) h(\theta), \tag{3.60}
\]
which satisfy the boundary conditions at \(r = 1 \) and \(\theta = 0 \), but not the boundary condition at \(\theta = \alpha \). The reasons are as before: we aim to obtain the solution for general \(w \) using linear combinations of solutions of the form (3.60) — see items A and B in § 3.1, as well as item C in § 3.2.

Substituting (3.60) into (3.58) yields, after a bit of manipulation

\[
\frac{r (r g')'}{g} + \frac{h''}{h} = 0. \tag{3.61}
\]

Using the same argument as in the prior examples, we conclude that

\[
r (r g')' - \mu g = 0 \quad \text{and} \quad h'' + \mu h = 0, \tag{3.62}
\]

where \(\mu \) is some constant, \(g(1) = 0 \), and \(h(0) = 0 \). Again: the problem is reduced to solving ode. In fact, it is easy to see that it should be\(^8\)

\[
h = \frac{1}{s} \sinh(s \theta) \quad \text{and} \quad g = \frac{r^{is} - r^{-is}}{s}, \quad \text{where} \quad \mu = -s^2, \tag{3.63}
\]

and as yet we know nothing about \(s \), other than it is some (possibly complex) constant.

In § 3.2, we argued that \(g \) should be non-singular at \(r = 0 \), since the origin was no different from any other point inside the circle for the problem in (3.37) — the singularity in the equation for \(g \) in (3.44) is merely a consequence of the coordinate system singularity at \(r = 0 \). **We cannot make this argument here**, since the origin is on the boundary for the problem in (3.58 – 3.59) — there is no reason why the solutions should be differentiable across the boundary! We can only state that

\[
g \text{ should be bounded } \iff \ s \neq 0 \text{ is real}. \tag{3.64}
\]

Furthermore, exchanging \(s \) by \(-s\) does not change the answer in (3.63). Thus

\[
0 < s < \infty. \tag{3.65}
\]

In this example we end up with a continuum of separated solutions, as opposed to the two prior examples, where discrete sets occurred.

Putting it all together, we now write the solution to the problem in (3.58 – 3.59) as follows

\[
u = \int_0^\infty \frac{\sinh(s \theta)}{\sinh(s \alpha)} \left(r^{is} - r^{-is} \right) W(s) \, ds, \tag{3.66}
\]

where \(W \) is computed in (3.69) below.

\(^8\)The multiplicative constant in these solutions is selected so that the correct solution is obtained for \(s = 0 \).
Remark 3.3 Start with the complex Fourier Transform

\[f(\zeta) = \int_{-\infty}^{\infty} \hat{f}(s) e^{i s \zeta} \, ds, \quad \text{where} \quad \hat{f}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\zeta) e^{-i s \zeta} \, d\zeta. \]

(3.67)

Apply it to an odd function. The answer can then be manipulated into the sine Fourier Transform

\[f(\zeta) = \int_{0}^{\infty} F(s) \sin(s \zeta) \, ds, \quad \text{where} \quad F(s) = \frac{2}{\pi} \int_{0}^{\infty} f(\zeta) \sin(s \zeta) \, d\zeta, \]

(3.68)

and \(0 < \zeta, s < \infty\). Change variables, so that \(0 < r = e^{-\zeta} < 1\). Then, with \(w(r) = f(\zeta)\) and \(W(s) = -\frac{1}{2i} F(s)\), this yields

\[
\begin{align*}
 w(r) &= \int_{0}^{\infty} W(s) \left(r^{i s} - r^{-i s}\right) \, ds, \quad \text{where} \\
 W(s) &= \frac{1}{2 \pi} \int_{0}^{1} \left(\frac{r^{-i s} - r^{i s}}{r}\right) w(r) \, dr,
\end{align*}
\]

(3.69)

which is another example of a transform pair associated with the spectrum of an operator (see below).

Finally: What is behind (3.69)? Why should we expect something like this? Note that the problem for \(g\) can be written in the form

\[\mathcal{L} g = \mu g, \quad \text{where} \quad \mathcal{L} g = r (r g')', \]

(3.70)

\(g(1) = 0\) and \(g\) is bounded (more accurately: the inequality in (3.71) applies). This is an eigenvalue problem in \(0 < r < 1\). Further, consider consider the set of all the functions such that

\[\int_{0}^{1} |\tilde{g}|^2(r) \frac{dr}{r} < \infty, \]

(3.71)

and define the scalar product

\[< \tilde{f}, \tilde{g} > = \int_{0}^{1} \tilde{f}'(r) \tilde{g}(r) \frac{dr}{r}. \]

(3.72)

With this scalar product \(\mathcal{L}\) is self-adjoint. However, it does not have any discrete spectrum, only continuum spectrum — with the pseudo-eigenfunctions given in (3.63), for \(0 < s < \infty\). This continuum spectrum is what is associated with the formulas in (3.69). In particular, note the presence of the scalar product (3.72) in the formula for \(W\).

\(^9\)No solutions that satisfy \(g(1) = 0\) and (3.71).

THE END.