Course 18.312: Algebraic Combinatorics

Lecture Notes # 18-19 Addendum by Gregg Musiker

March 18th - 20th, 2009

The following material can be found in a number of sources, including Sections 7.3 – 7.5, 7.7, 7.10 – 7.11, 7.15 – 16 of Stanley’s Enumerative Combinatorics Volume 2.

1 Elementary and Homogeneous Symmetric Functions

A polynomial in \(n \) variables, \(P(x_1, x_2, \ldots, x_n) \in \mathbb{C}[x_1, x_2, \ldots, x_n] \) is known as a symmetric polynomial if for any permutation \(\sigma \in S_n \), \(P(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) = P(x_1, x_2, \ldots, x_n) \).

An important family of symmetric polynomials is the family of elementary symmetric functions.

\[
e_k = e_k(x_1, x_2, \ldots, x_n) := \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} x_{i_1}x_{i_2} \cdots x_{i_k}.
\]

Notice that \(e_0 = 1 \), \(e_k(x_1, x_2, \ldots, x_n) = 0 \) if \(k > n \) and the number of terms in \(e_k(x_1, x_2, \ldots, x_n) \) is \(\binom{n}{k} \). If \(\lambda = [\lambda_1, \lambda_2, \ldots, \lambda_\ell] \) is a partition, \(e_\lambda := e_{\lambda_1} \cdot e_{\lambda_2} \cdots e_{\lambda_\ell} \).

(Fundamental Theorem of Symmetric Functions) Any symmetric polynomial with coefficients in \(\mathbb{C} \) can be written as a \(\mathbb{C} \)-linear combination of the \(e_\lambda \)’s. Furthermore, any symmetric polynomial with coefficients in \(\mathbb{Z} \) can be written as a \(\mathbb{Z} \)-linear combination of the \(e_\lambda \)’s.

We will not prove this theorem but will illustrate it for a few important examples of symmetric functions.

Let \(E(t) := \sum_{k=0}^{\infty} e_k t^k \). Then \(E(t) = \prod_i (1 + x_i t) \). In particular, if we are working with symmetric polynomials in \(n \) variables, then \(i \) ranges over \(\{1, 2, \ldots, n\} \) in this
product.

Another important family of symmetric functions is family of homogeneous symmetric functions, defined as

\[h_k = h_k(x_1, x_2, \ldots, x_n) := \sum_{1 \leq i_1 \leq i_2 \leq \cdots \leq i_k} x_{i_1}x_{i_2} \cdots x_{i_k}. \]

Similarly we let \(h_\lambda = h_{\lambda_1} \cdot h_{\lambda_2} \cdots h_{\lambda_t}, h_0 = 1, h_1 = e_1, \) and the number of terms in \(h_k(x_1, x_2, \ldots, x_n) \) is \(\binom{n}{k} \), the number of \(k \)-element multisets of \(\{1, 2, \ldots, n\} \).

Let \(H(t) := \sum_{k=0}^{\infty} h_k t^k \). Then \(H(t) = \prod_i \frac{1}{(1-x_i t)}. \) As a consequence we get the following result.

Theorem. We have the identity for all \(k \geq 1 \):

\[\sum_{i=0}^{k} (-1)^k e_i h_{k-i} = 0. \]

Proof. From the above, we see that \(H(t)E(-t) = 1 \) so the convolution

\[\sum_{i=0}^{k} (-1)^i e_i h_{k-i} = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k \geq 1 \end{cases}. \]

As a corollary, we get that

\[h_k = \sum_{i=1}^{k} (-1)^i e_i h_{k-i}. \]

Thus by induction, we get explicit expressions for \(h_k \) as a polynomial in terms of \(e_1 \) through \(e_k \).

Since these identities are true regardless of the number of variables appearing in the polynomials, these are symmetric function identities rather than simply identities of polynomials.

2 Power symmetric functions

We define

\[p_k = p_k(x_1, x_2, \ldots, x_n) := x_1^k + x_2^k + \cdots + x_n^k, \]
the power symmetric functions, with \(p_\lambda = p_{\lambda_1} \cdot p_{\lambda_2} \cdots p_{\lambda_t} \).

Theorem. These functions satisfy the **Newton-Girard** identities for all \(k \geq 1 \):

\[
ke_k = \sum_{i=1}^{k} (-1)^{i-1} e_{k-i} p_i \\
kh_k = \sum_{i=1}^{k} h_{k-i} p_i.
\]

Proof. We prove the second identity, involving the power symmetric functions and the homogeneous symmetric functions. Let

\[
P(t) = \sum_{k=1}^{\infty} p_k t^k.
\]

Notice that

\[
\frac{d}{dt} \left(H(t) \right) = H'(t) = \sum_{k=0}^{\infty} kh_k t^{k-1},
\]

and the logarithmic derivative

\[
\frac{H'(t)}{H(t)} = \frac{d}{dt} \left(\log H(t) \right) = \frac{d}{dt} \left(\sum_{i} \log \prod_{i} (1 - x_i t)^{-1} \right)
\]
\[
= \frac{d}{dt} \left(\sum_{i} - \log(1 - x_i t) \right)
\]
\[
= \frac{d}{dt} \left(\sum_{i} \sum_{j=1}^{\infty} \frac{(x_i t)^j}{j} \right)
\]
\[
= \sum_{j=1}^{\infty} \left(\sum_{i} x_i^j t^{j-1} \right)
\]
\[
= \sum_{k=1}^{\infty} p_k t^{k-1} = \frac{P(t)}{t}.
\]

Thus \(P(t)H(t) = tH'(t) \) and each coefficient of \(t^k \) in the convolution on the LHS, \(\sum_{i=1}^{k} h_{k-i} p_i \), equals the coefficient of \(t^{k-1} \) in \(H'(t) \), namely \(kh_k \).

The proof of the first identity is analogous. We leave it to the reader.

As above, we can use these identities like these to rewrite \(p_k \)'s in terms of \(e_\lambda \)'s or \(h_\lambda \)'s, respectively, or vice-versa. First we introduce some notation.

For \(i \geq 1 \), let \(m_i = m_i(\lambda) \) copies of the number \(i \) in \(\lambda \). (Note that \(m_i = 0 \) for \(i > |\lambda| \).) \(z_\lambda = \prod_{i=1}^{\infty} t^{m_i} \cdot (m_i)! \). Let \(\epsilon_\lambda = (-1)^{m_2 + m_4 + m_6 + \ldots} \).
Lemma. If \(\lambda \vdash n \) and has \(\ell \) nonzero parts, then \(\epsilon_\lambda = (-1)^{n-\ell} \). In particular, \(\epsilon_\lambda \) is the sign of the permutation that contains \(m_i(\lambda) \) \(i \)-cycles (for \(i \geq 1 \)).

Proof. Left to the reader.

Using this notation we obtain the following result.

Theorem.\[h_k = \sum_{\lambda \vdash k} \frac{p_\lambda}{z_\lambda} \]
\[e_k = \sum_{\lambda \vdash k} \epsilon_\lambda \frac{p_\lambda}{z_\lambda} \]

Proof. We saw in the last proof that
\[\frac{d}{dt} \left(\log H(t) \right) = \frac{P(t)}{t} \]

As a consequence,
\[\sum_{k=0}^\infty h_k t^k = \exp \left(\sum_{k=1}^\infty \frac{p_k t^k}{k} \right) \]

The exponential of a series, \(\exp \left(\sum_{k=1}^\infty a_k t^k \right) = \exp(A(t)) \), equals the sum \(\sum_{i=0}^\infty \frac{A(t)^i}{i!} \), which can be rewritten as the double sum

\[\sum_{i=0}^\infty \sum_{\text{unordered composition } r_1 + r_2 + r_3 + \ldots + r_i = i} \frac{(a_1 t)^{r_1} (a_2 t)^{r_2} \ldots (a_i t)^{r_i}}{i!} \]

after expanding each term by the multinomial theorem.

Since the order of the composition does not matter, and only nonzero parts contribute to the summands, we can think of these \(r_j \)'s as the number of \(j \)'s in a partition \(\lambda \vdash i \), i.e., each such composition gives rise to a \(\lambda \) so that \(r_j = m_j(\lambda) \). We then use the above notation to rephrase this sum as

\[\exp(A(t)) = \sum_{i=0}^\infty \sum_{\lambda \vdash i} \frac{(a_1 m_1 a_2 m_2 \ldots a_i m_i)^t}{i!} \]

We leave as an exercise that the coefficient of \(t^k \) in \(\exp \left(\sum_{k=1}^\infty \frac{p_k t^k}{k} \right) \) is \(\sum_{\lambda \vdash k} \frac{p_\lambda}{z_\lambda} \).
3 Monomial Symmetric Functions

An even simpler family of symmetric functions is the family of monomial symmetric functions.

\[m_\lambda = m_\lambda(x_1, x_2, \ldots, x_n) := \sum_{[\alpha_1, \alpha_2, \ldots, \alpha_n] \text{ is a rearrangement of } [\lambda_1, \lambda_2, \ldots, \lambda_f, 0, 0, \ldots, 0]} x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n} \]

if \(n > \ell \), the number of nonzero parts in \(\lambda \), and we set \(m_\lambda(x_1, x_2, \ldots, x_n) \) to be zero otherwise.

(Note that when we think of \(m_\lambda \) as a formal symmetric function, i.e. in an infinite number of variables, this second case never occurs.)

Remark. Note that unlike the \(e_\lambda \)'s, \(h_\lambda \)'s and \(p_\lambda \)'s, \(m_\lambda \neq m_{\lambda_1} \cdot m_{\lambda_2} \cdots m_{\lambda_n} \).

Observation. \(e_n = m_{[1^n]}, \ p_n = m_{[n]}, \) and \(h_n = \sum_{\lambda \vdash n} m_\lambda \).

4 Schur Functions

We define a fifth family of symmetric functions by using determinants. Let \(\Delta(x_1, x_2, \ldots, x_n) \) denote the determinant of the matrix

\[
a_\delta = \begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
x_1 & x_2 & x_3 & \ldots & x_n \\
x_1^2 & x_2^2 & x_3^2 & \ldots & x_n^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \ldots & x_n^{n-1}
\end{bmatrix}.
\]

Theorem.

\[\Delta(x_1, x_2, \ldots, x_n) = \prod_{1 \leq i < j \leq n} (x_j - x_i). \]

Furthermore, \(\Delta(x_1, x_2, \ldots, x_n) \) is the nonzero polynomial with smallest degree and the property that

\[\Delta(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) = \text{sgn}(\sigma)\Delta(x_1, x_2, \ldots, x_n) \]

for any permutation \(\sigma \in S_n \). In particular, if \(\sigma \) is a transposition that just switches \(x_i \) and \(x_j \), we get \(-\Delta(x_1, x_2, \ldots, x_n)\) on the RHS.
Such a polynomial is called an **alternating** polynomial, and it follows from above that all alternating polynomials must be divisible by \(\Delta(x_1, x_2, \ldots, x_n) \). We can build other alternating polynomials by taking the determinant of

\[
a_{\lambda+\delta} = \begin{bmatrix}
x_1^{\lambda_1} & x_2^{\lambda_2} & x_3^{\lambda_3} & \cdots & x_n^{\lambda_n} \\
x_1^{\lambda_1-1+1} & x_2^{\lambda_2-1+1} & x_3^{\lambda_3-1+1} & \cdots & x_n^{\lambda_n-1+1} \\
x_1^{\lambda_1-2+2} & x_2^{\lambda_2-2+2} & x_3^{\lambda_3-2+2} & \cdots & x_n^{\lambda_n-2+2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{\lambda_1+(n-1)} & x_2^{\lambda_2+(n-1)} & x_3^{\lambda_3+(n-1)} & \cdots & x_n^{\lambda_n+(n-1)}
\end{bmatrix},
\]

for any partition \(\lambda = [\lambda_1, \lambda_2, \ldots, \lambda_n] \) with at most \(n \) parts, written in weakly decreasing order.

Consequently, the quotient

\[
s_\lambda = s_\lambda(x_1, x_2, \ldots, x_n) = \frac{\det(a_{\lambda+\delta})}{\det(a_\delta)}
\]

is the quotient of two alternating polynomials, and is in fact a symmetric polynomial (function). We call these \(s_\lambda \)'s **Schur functions**.

Remark. Note that like the \(m_\lambda \)'s, \(s_\lambda \neq s_{\lambda_1} \cdot s_{\lambda_2} \cdots s_{\lambda_n} \).

The Schur functions are very important in the theory of representation theory of \(S_n \) and \(GL_n \). We will not discuss such connections further in the course, although there are many possible final projects on this topic.

There is a beautiful formula for writing the \(s_\lambda \)'s in terms of the \(h_\mu \)'s (equivalently the \(e_\mu \)'s). The following two formulas are known as the **Jacobi-Trudi Identity**.

Theorem. If \(\lambda \) has \(\ell \) nonzero parts, let \(JT_\ell \) be the \(\ell \)-by-\(\ell \) matrix whose \((i, j)\)th entry is \(h_{\lambda_i-i+j} \), where we set \(h_0 = 1 \) and \(h_{-k} = 0 \) for \(k < 0 \). Then

\[
s_\lambda = \det JT_\ell.
\]

Recall that \(\lambda^T \) is the conjugate (or transpose) of \(\lambda \). Let \(JT'_\ell \) be the matrix whose \((i, j)\)th entry is \(e_{\lambda_i-i+j} \). Then we also obtain

\[
s_{\lambda^T} = \det JT'_\ell.
\]

Example.

\[
s_{4,1}(x_1, x_2, x_3) = \det \begin{bmatrix} h_{4-1+1} & h_{4-1+2} & h_{4-1+3} \\ h_{1-2+1} & h_{1-2+2} & h_{1-2+3} \\ h_{0-3+1} & h_{0-3+2} & h_{0-3+3} \end{bmatrix} = \det \begin{bmatrix} h_4 & h_5 & h_6 \\ 1 & h_1 & h_2 \\ 0 & 0 & 1 \end{bmatrix}.
\]
Proof. We let $e^{(t)}_j$ denote the jth elementary symmetry function on the alphabet \(\{x_1, x_2, \ldots, x_{\ell-1}, x_{\ell+1}, \ldots, x_n\} \).

\[
\left(\sum_{i \geq 0} h_i t^i \right) \left(\sum_{j=0}^{n-1} e^{(t)}_j (-t)^j \right) = \prod_{i=1}^{n} \frac{1}{1-x_i t} \prod_{m=1, m \neq \ell}^{n} (1-x_m t) \\
= \frac{1}{1-x_{\ell} t} = 1 + x_{\ell} t + x_{\ell}^2 t^2 + \ldots
\]

As a special application, we take the coefficient of t^{α_i} on both sides and obtain

\[
\sum_{j=0}^{n-1} h_{\alpha_i-j} e^{(t)}_j (-1)^j = \sum_{j=1}^{n} h_{\alpha_i-n+j} e^{(t)}_{n-j} (-1)^{n-j} = x_{\ell}^{\alpha_i}.
\]

This identity implies the matrix equation

\[
H_\alpha E = A_\alpha,
\]

where we let the entries of A_α be $x_{\ell}^{\alpha_i}$'s, the entries of H_α be h_{α_i-n+j}'s and the entries of E be $(-1)^{n-i} e_{n-i}^{(j)}$'s.

If we let $\alpha = [n - 1, n - 2, \ldots, 2, 1, 0]$ (resp. $\lambda + [n - 1, n - 2, \ldots, 2, 1, 0]$), the right-hand-side gives precisely the entries of the matrix appearing in the denominator (resp. numerator) of the Schur function.

It suffices to show that $\det E = \det A_{[n-1, n-2, \ldots, 2, 1, 0]} = \Delta(x_1, x_2, \ldots, x_n)$, and thus we obtain

\[
\det H_{\lambda + [n-1, n-2, \ldots, 2, 1, 0]} = \frac{\det A_{\lambda + [n-1, n-2, \ldots, 2, 1, 0]}}{\det A_{[n-1, n-2, \ldots, 2, 1, 0]}},
\]

The formula $\det E = \det A_{[n-1, n-2, \ldots, 2, 1, 0]}$ follows from the fact that $A_{[n-1, n-2, \ldots, 2, 1, 0]} = H_{[n-1, n-2, \ldots, 2, 1, 0]} E$ and $H_{[n-1, n-2, \ldots, 2, 1, 0]}$ is an upper triangular matrix with ones on the diagonal. We saw $\det A_{[n-1, n-2, \ldots, 2, 1, 0]} = \Delta(x_1, x_2, \ldots, x_n)$ above.

We close these notes with an alternative, more combinatorial definition, of Schur functions.

We begin by generalizing the definition of Standard Young Tableaux (SYT). Recall that a SYT of shape λ, $\lambda \vdash n$, is a filling of a Young diagram of shape λ using exactly the numbers $\{1, 2, \ldots, n\}$ such that the numbers in each row increase as we proceed to the right, and the numbers in each column increase as we proceed downwards.
A Semi-standard Young Tableaux (SSYT) of shape \(\lambda \) using no number smaller than 1 or larger than \(n \) is a filling of the Young diagram so that the numbers in each row weakly increase and the numbers in each column strictly decrease.

We define the weight \(x_T \) of a SSYT \(T \) to be the product \(\prod_{i=1}^{n} x_i^{\# v's \text{ appearing in } T} \).

Theorem.

\[
 s_{\lambda}(x_1, x_2, \ldots, x_n) = \sum_{\text{SSYT } T \text{ of shape } \lambda \text{ using no number outside } 1 \leq i \leq n} x_T.
\]

Proof. Omitted.

The proof of this theorem along with associated results or applications of SSYT is a possible final project.
18.312 Algebraic Combinatorics
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.