LECTURE 1

Basic definitions, the intersection poset and the characteristic polynomial

1.1. Basic definitions

The following notation is used throughout for certain sets of numbers:

\[
\begin{align*}
\mathbb{N} & \text{ nonnegative integers} \\
\mathbb{P} & \text{ positive integers} \\
\mathbb{Z} & \text{ integers} \\
\mathbb{Q} & \text{ rational numbers} \\
\mathbb{R} & \text{ real numbers} \\
\mathbb{R}^+ & \text{ positive real numbers} \\
\mathbb{C} & \text{ complex numbers} \\
[m] & \text{ the set } \{1, 2, \ldots, m\} \text{ when } m \in \mathbb{N}
\end{align*}
\]

We also write \([t^k] \chi(t)\) for the coefficient of \(t^k\) in the polynomial or power series \(\chi(t)\). For instance, \([t^2](1 + t)^4 = 6\).

A \textit{finite hyperplane arrangement} \(\mathcal{A}\) is a finite set of affine hyperplanes in some vector space \(V \cong K^n\), where \(K\) is a field. We will not consider infinite hyperplane arrangements or arrangements of general subspaces or other objects (though they have many interesting properties), so we will simply use the term \textit{arrangement} for a finite hyperplane arrangement. Most often we will take \(K = \mathbb{R}\), but as we will see even if we’re only interested in this case it is useful to consider other fields as well. To make sure that the definition of a hyperplane arrangement is clear, we define a \textit{linear hyperplane} to be an \((n - 1)\)-dimensional subspace \(H\) of \(V\), i.e.,

\[
H = \{v \in V : \alpha \cdot v = 0\},
\]

where \(\alpha\) is a fixed nonzero vector in \(V\) and \(\alpha \cdot v\) is the usual dot product:

\[
(\alpha_1, \ldots, \alpha_n) \cdot (v_1, \ldots, v_n) = \sum \alpha_i v_i.
\]

An \textit{affine hyperplane} is a translate \(J\) of a linear hyperplane, i.e.,

\[
J = \{v \in V : \alpha \cdot v = a\},
\]

where \(\alpha\) is a fixed nonzero vector in \(V\) and \(a \in K\).

If the equations of the hyperplanes of \(\mathcal{A}\) are given by \(L_1(x) = a_1, \ldots, L_m(x) = a_m\), where \(x = (x_1, \ldots, x_n)\) and each \(L_i(x)\) is a homogeneous linear form, then we call the polynomial

\[
Q_\mathcal{A}(x) = (L_1(x) - a_1) \cdots (L_m(x) - a_m)
\]

the \textit{defining polynomial} of \(\mathcal{A}\). It is often convenient to specify an arrangement by its defining polynomial. For instance, the arrangement \(\mathcal{A}\) consisting of the \(n\) coordinate hyperplanes has \(Q_\mathcal{A}(x) = x_1 x_2 \cdots x_n\).

Let \(\mathcal{A}\) be an arrangement in the vector space \(V\). The \textit{dimension} \(\dim(\mathcal{A})\) of \(\mathcal{A}\) is defined to be \(\dim(V) = n\), while the \textit{rank} \(\text{rank}(\mathcal{A})\) of \(\mathcal{A}\) is the dimension of the space spanned by the normals to the hyperplanes in \(\mathcal{A}\). We say that \(\mathcal{A}\) is \textit{essential} if \(\text{rank}(\mathcal{A}) = \dim(\mathcal{A})\). Suppose that \(\text{rank}(\mathcal{A}) = r\), and take \(V = K^n\). Let
Y be a complementary space in K^n to the subspace X spanned by the normals to hyperplanes in A. Define

$$W = \{v \in V : v \cdot y = 0 \ \forall y \in Y\}.$$

If $\text{char}(K) = 0$ then we can simply take $W = X$. By elementary linear algebra we have

$$\text{codim}_W(H \cap W) = 1$$

for all $H \in A$. In other words, $H \cap W$ is a hyperplane of W, so the set $A_W := \{H \cap W : H \in A\}$ is an essential arrangement in W. Moreover, the arrangements A and A_W are “essentially the same,” meaning in particular that they have the same intersection poset (as defined in Definition 1.1). Let us call A_W the essentialization of A, denoted $\text{ess}(A)$. When $K = \mathbb{R}$ and we take $W = X$, then the arrangement A is obtained from A_W by “stretching” the hyperplane $H \cap W \in A_W$ orthogonally to W. Thus if W^\perp denotes the orthogonal complement to W in V, then $H' \in A_W$ if and only if $H' \oplus W^\perp \in A$. Note that in characteristic p this type of reasoning fails since the orthogonal complement of a subspace W can intersect W in a subspace of dimension greater than 0.

Example 1.1. Let A consist of the lines $x = a_1, \ldots, x = a_k$ in K^2 (with coordinates x and y). Then we can take W to be the x-axis, and $\text{ess}(A)$ consists of the points $x = a_1, \ldots, x = a_k$ in K.

Now let $K = \mathbb{R}$. A region of an arrangement A is a connected component of the complement X of the hyperplanes:

$$X = \mathbb{R}^n - \bigcup_{H \in A} H.$$

Let $\mathcal{R}(A)$ denote the set of regions of A, and let

$$r(A) = \#\mathcal{R}(A),$$

the number of regions. For instance, the arrangement A shown below has $r(A) = 14$.

It is a simple exercise to show that every region $R \in \mathcal{R}(A)$ is open and convex (continuing to assume $K = \mathbb{R}$), and hence homeomorphic to the interior of an n-dimensional ball \mathbb{B}^n (Exercise 1). Note that if W is the subspace of V spanned by the normals to the hyperplanes in A, then $R \in \mathcal{R}(A)$ if and only if $R \cap W \in \mathcal{R}(A_W)$. We say that a region $R \in \mathcal{R}(A)$ is relatively bounded if $R \cap W$ is bounded. If A is essential, then relatively bounded is the same as bounded. We write $b(A)$ for
the number of relatively bounded regions of \(A \). For instance, in Example 1.1 take
\(K = \mathbb{R} \) and \(a_1 < a_2 < \cdots < a_k \). Then the relatively bounded regions are the
regions \(a_i < x < a_{i+1}, 1 \leq i \leq k - 1 \). In \(\varepsilon s(A) \) they become the (bounded) open
intervals \((a_i, a_{i+1}) \). There are also two regions of \(A \) that are not relatively bounded,
viz., \(x < a_1 \) and \(x > a_k \).

A (closed) half-space is a set \(\{ x \in \mathbb{R}^n : x \cdot \alpha \geq c \} \) for some \(\alpha \in \mathbb{R}^n, c \in \mathbb{R} \). If
\(H \) is a hyperplane in \(\mathbb{R}^n \), then the complement \(\mathbb{R}^n - H \) has two (open) components
whose closures are half-spaces. It follows that the closure \(\bar{R} \) of a region \(R \) of \(A \) is
a finite intersection of half-spaces, i.e., a (convex) polyhedron (of dimension \(n \)). A
bounded polyhedron is called a (convex) polytope. Thus if \(R \) (or \(\bar{R} \)) is bounded,
then \(\bar{R} \) is a polytope (of dimension \(n \)).

An arrangement \(A \) is in general position if
\[
\{ H_1, \ldots, H_p \} \subseteq A, \; p \leq n \quad \Rightarrow \quad \dim(H_1 \cap \cdots \cap H_p) = n - p \\
\{ H_1, \ldots, H_p \} \subseteq A, \; p > n \quad \Rightarrow \quad H_1 \cap \cdots \cap H_p = \emptyset.
\]

For instance, if \(n = 2 \) then a set of lines is in general position if no two are parallel
and no three meet at a point.

Let us consider some interesting examples of arrangements that will anticipate
some later material.

Example 1.2. Let \(A_m \) consist of \(m \) lines in general position in \(\mathbb{R}^2 \). We can compute
\(r(A_m) \) using the sweep hyperplane method. Add a \(L \) line to \(A_k \) (with \(A_K \cup \{ L \} \) in
general position). When we travel along \(L \) from one end (at infinity) to the other,
every time we intersect a line in \(A_k \) we create a new region, and we create one new
region at the end. Before we add any lines we have one region (all of \(\mathbb{R}^2 \)). Hence
\[
r(A_m) = \#\text{intersections} + \#\text{lines} + 1 \\
= \binom{m}{2} + m + 1.
\]

Example 1.3. The braid arrangement \(B_n \) in \(K^n \) consists of the hyperplanes
\(B_n : x_i - x_j = 0, \; 1 \leq i < j \leq n. \)

Thus \(B_n \) has \(\binom{n}{2} \) hyperplanes. To count the number of regions when \(K = \mathbb{R} \), note
that specifying which side of the hyperplane \(x_i - x_j = 0 \) a point \((a_1, \ldots, a_n) \) lies
on is equivalent to specifying whether \(a_i < a_j \) or \(a_i > a_j \). Hence the number of
regions is the number of ways that we can specify whether \(a_i < a_j \) or \(a_i > a_j \) for
\(1 \leq i < j \leq n \). Such a specification is given by imposing a linear order on the
a_i’s. In other words, for each permutation \(w \in S_n \) (the symmetric group of all
permutations of \(1, 2, \ldots, n \)), there corresponds a region \(R_w \) of \(B_n \) given by
\[
R_w = \{ (a_1, \ldots, a_n) \in \mathbb{R}^n : a_{w(1)} > a_{w(2)} > \cdots > a_{w(n)} \}.
\]

Hence \(r(B_n) = n! \). Rarely is it so easy to compute the number of regions!

Note that the braid arrangement \(B_n \) is not essential; indeed, \(\text{rank}(B_n) = n - 1 \).
When \(\text{char}(K) \neq 2 \) the space \(W \subseteq K^n \) of equation (1) can be taken to be
\[
W = \{ (a_1, \ldots, a_n) \in K^n : a_1 + \cdots + a_n = 0 \}.
\]

The braid arrangement has a number of “deformations” of considerable interest.

We will just define some of them now and discuss them further later. All these
arrangements lie in \(K^n \), and in all of them we take \(1 \leq i < j \leq n \). The reader who
likes a challenge can try to compute their number of regions when \(K = \mathbb{R} \). (Some are much easier than others.)

- **generic braid arrangement**: \(x_i - x_j = a_{ij} \), where the \(a_{ij} \)'s are “generic” (e.g., linearly independent over the prime field, so \(K \) has to be “sufficiently large”). The precise definition of “generic” will be given later. (The prime field of \(K \) is its smallest subfield, isomorphic to either \(\mathbb{Q} \) or \(\mathbb{Z}/p\mathbb{Z} \) for some prime \(p \).)
- **semigeneric braid arrangement**: \(x_i - x_j = a_i \), where the \(a_i \)'s are “generic.”
- **Shi arrangement**: \(x_i - x_j = 0,1 \) (so \(n(n-1) \) hyperplanes in all).
- **Linial arrangement**: \(x_i - x_j = 1 \).
- **Catalan arrangement**: \(x_i - x_j = -1,0,1 \).
- **semiorder arrangement**: \(x_i - x_j = -1,1 \).
- **threshold arrangement**: \(x_i + x_j = 0 \) (not really a deformation of the braid arrangement, but closely related).

An arrangement \(A \) is **central** if \(\bigcap_{H \in A} H \neq \emptyset \). Equivalently, \(A \) is a translate of a **linear arrangement** (an arrangement of linear hyperplanes, i.e., hyperplanes passing through the origin). Many other writers call an arrangement central, rather than linear, if \(0 \in \bigcap_{H \in A} H \). If \(A \) is central with \(X = \bigcap_{H \in A} H \), then \(\text{rank}(A) = \text{codim}(X) \). If \(A \) is central, then note also that \(b(A) = 0 \) (why?).

There are two useful arrangements closely related to a given arrangement \(A \). If \(A \) is a linear arrangement in \(K^n \), then **projectivize** \(A \) by choosing some \(H \in A \) to be the hyperplane at infinity in projective space \(P_K^{n-1} \). Thus if we regard

\[
P_K^{n-1} = \{(x_1, \ldots, x_n) : x_i \in K, \text{not all } x_i = 0\}/\sim,
\]

where \(u \sim v \) if \(u = \alpha v \) for some \(0 \neq \alpha \in K \), then

\[
H = \{(x_1, \ldots, x_{n-1}, 0) : x_i \in K, \text{not all } x_i = 0\}/\sim \cong P_K^{n-2}.
\]

The remaining hyperplanes in \(A \) then correspond to “finite” (i.e., not at infinity) projective hyperplanes in \(P_K^{n-1} \). This gives an arrangement \(\text{proj}(A) \) of hyperplanes in \(P_K^{n-1} \). When \(K = \mathbb{R} \), the two regions \(R \) and \(-R \) of \(A \) become identified in \(\text{proj}(A) \). Hence \(r(\text{proj}(A)) = \frac{1}{2} r(A) \). When \(n = 3 \), we can draw \(P_\mathbb{R}^2 \) as a disk with antipodal boundary points identified. The circumference of the disk represents the hyperplane at infinity. This provides a good way to visualize three-dimensional real linear arrangements. For instance, if \(A \) consists of the three coordinate hyperplanes \(x_1 = 0, x_2 = 0, \) and \(x_3 = 0 \), then a projective drawing is given by

![Diagram](image)

The line labelled \(i \) is the projectivization of the hyperplane \(x_i = 0 \). The hyperplane at infinity is \(x_3 = 0 \). There are four regions, so \(r(A) = 8 \). To draw the incidences among all eight regions of \(A \), simply “reflect” the interior of the disk to the exterior:
Regarding this diagram as a planar graph, the dual graph is the 3-cube (i.e., the vertices and edges of a three-dimensional cube) [why?].

For a more complicated example of projectivization, Figure 1 shows proj(\mathcal{B}_4) (where we regard \mathcal{B}_4 as a three-dimensional arrangement contained in the hyperplane $x_1 + x_2 + x_3 + x_4 = 0$ of \mathbb{R}^4), with the hyperplane $x_i = x_j$ labelled ij, and with $x_1 = x_4$ as the hyperplane at infinity.
We now define an operation which is “inverse” to projectivization. Let \(\mathcal{A} \) be an (affine) arrangement in \(K^n \), given by the equations
\[
L_1(x) = a_1, \ldots, L_m(x) = a_m.
\]
Introduce a new coordinate \(y \), and define a central arrangement \(c\mathcal{A} \) (the cone over \(\mathcal{A} \)) in \(K^n \times K = K^{n+1} \) by the equations
\[
L_1(x) = a_1y, \ldots, L_m(x) = a_my, \ y = 0.
\]
For instance, let \(\mathcal{A} \) be the arrangement in \(\mathbb{R}^1 \) given by \(x = -1, x = 2, \) and \(x = 3 \). The following figure should explain why \(c\mathcal{A} \) is called a cone.

\[\text{Diagram}\]

It is easy to see that when \(K = \mathbb{R} \), we have \(r(c\mathcal{A}) = 2r(\mathcal{A}) \). In general, \(c\mathcal{A} \) has the “same combinatorics as \(\mathcal{A} \), times 2.” See Exercise 1.

1.2. The intersection poset

Recall that a poset (short for partially ordered set) is a set \(P \) and a relation \(\leq \) satisfying the following axioms (for all \(x, y, z \in P \)):

(P1) (reflexivity) \(x \leq x \)
(P2) (antisymmetry) If \(x \leq y \) and \(y \leq x \), then \(x = y \).
(P3) (transitivity) If \(x \leq y \) and \(y \leq z \), then \(x \leq z \).

Obvious notation such as \(x < y \) for \(x \leq y \) and \(x \neq y \), and \(y \geq x \) for \(x \leq y \) will be used throughout. If \(x \leq y \) in \(P \), then the (closed) interval \([x, y]\) is defined by
\[
[x, y] = \{ z \in P : x \leq z \leq y \}.
\]

Note that the empty set \(\emptyset \) is not a closed interval. For basic information on posets not covered here, see [18].

Definition 1.1. Let \(\mathcal{A} \) be an arrangement in \(V \), and let \(L(\mathcal{A}) \) be the set of all nonempty intersections of hyperplanes in \(\mathcal{A} \), including \(V \) itself as the intersection over the empty set. Define \(x \leq y \) in \(L(\mathcal{A}) \) if \(x \supseteq y \) (as subsets of \(V \)). In other words, \(L(\mathcal{A}) \) is partially ordered by reverse inclusion. We call \(L(\mathcal{A}) \) the intersection poset of \(\mathcal{A} \).

NOTE. The primary reason for ordering intersections by reverse inclusion rather than ordinary inclusion is Proposition 3.8. We don’t want to alter the well-established definition of a geometric lattice or to refer constantly to “dual geometric lattices.”

The element \(V \in L(\mathcal{A}) \) satisfies \(x \geq V \) for all \(x \in L(\mathcal{A}) \). In general, if \(P \) is a poset then we denote by \(\hat{0} \) an element (necessarily unique) such that \(x \geq \hat{0} \) for all
$x \in P$. We say that y covers x in a poset P, denoted $x \lessdot y$, if $x < y$ and no $z \in P$ satisfies $x < z < y$. Every finite poset is determined by its cover relations. The (Hasse) diagram of a finite poset is obtained by drawing the elements of P as dots, with x drawn lower than y if $x < y$, and with an edge between x and y if $x \lessdot y$. Figure 2 illustrates four arrangements A in \mathbb{R}^2, with (the diagram of) $L(A)$ drawn below A.

A chain of length k in a poset P is a set $x_0 < x_1 < \cdots < x_k$ of elements of P. The chain is saturated if $x_0 < x_1 < \cdots < x_k$. We say that P is graded of rank n if every maximal chain of P has length n. In this case P has a rank function $\text{rk} : P \to \mathbb{N}$ defined by:

- $\text{rk}(x) = 0$ if x is a minimal element of P.
- $\text{rk}(y) = \text{rk}(x) + 1$ if $x \lessdot y$ in P.

If $x < y$ in a graded poset P then we write $\text{rk}(x, y) = \text{rk}(y) - \text{rk}(x)$, the length of the interval $[x, y]$. Note that we use the notation $\text{rank}(A)$ for the rank of an arrangement A but rk for the rank function of a graded poset.

Proposition 1.1. Let A be an arrangement in a vector space $V \cong K^n$. Then the intersection poset $L(A)$ is graded of rank equal to $\text{rank}(A)$. The rank function of $L(A)$ is given by

$$\text{rk}(x) = \text{codim}(x) = n - \dim(x),$$

where $\dim(x)$ is the dimension of x as an affine subspace of V.

Proof. Since $L(A)$ has a unique minimal element $\emptyset = V$, it suffices to show that (a) if $x \lessdot y$ in $L(A)$ then $\dim(x) - \dim(y) = 1$, and (b) all maximal elements of $L(A)$ have dimension $n - \text{rank}(A)$. By linear algebra, if H is a hyperplane and x an affine subspace, then $H \cap x = x$ or $\dim(x) - \dim(H \cap x) = 1$, so (a) follows. Now suppose that x has the largest codimension of any element of $L(A)$, say $\text{codim}(x) = d$. Thus x is an intersection of d linearly independent hyperplanes (i.e., their normals are linearly independent) H_1, \ldots, H_d in A. Let $y \in L(A)$ with $c = \text{codim}(y) < d$. Thus y is an intersection of c hyperplanes, so some H_i ($1 \leq i \leq d$) is linearly independent from them. Then $y \cap H_i \neq \emptyset$ and $\text{codim}(y \cap H_i) > \text{codim}(y)$. Hence y is not a maximal element of $L(A)$, proving (b). \qed
1.3. The characteristic polynomial

A poset P is \textit{locally finite} if every interval $[x, y]$ is finite. Let $\text{Int}(P)$ denote the set of all closed intervals of P. For a function $f : \text{Int}(P) \rightarrow \mathbb{Z}$, write $f(x, y)$ for $f([x, y])$. We now come to a fundamental invariant of locally finite posets.

\textbf{Definition 1.2.} Let P be a locally finite poset. Define a function $\mu = \mu_P : \text{Int}(P) \rightarrow \mathbb{Z}$, called the \textit{M"obius function} of P, by the conditions:

\begin{align*}
\mu(x, x) &= 1, \text{ for all } x \in P \\
\mu(x, y) &= -\sum_{x \leq z < y} \mu(x, z), \text{ for all } x < y \text{ in } P.
\end{align*}

This second condition can also be written

$$\sum_{x \leq z \leq y} \mu(x, z) = 0, \text{ for all } x < y \text{ in } P.$$

If P has a $\hat{0}$, then we write $\mu(x) = \mu(\hat{0}, x)$. Figure 3 shows the intersection poset L of the arrangement \mathcal{A} in K^3 (for any field K) defined by $Q_{\mathcal{A}}(x) = xyz(x + y)$, together with the value $\mu(x)$ for all $x \in L$.

A important application of the M"obius function is the \textit{M"obius inversion formula}. The best way to understand this result (though it does have a simple direct proof) requires the machinery of incidence algebras. Let $\mathcal{I}(P) = \mathcal{I}(P, K)$ denote the vector space of all functions $f : \text{Int}(P) \rightarrow K$. Write $f(x, y)$ for $f([x, y])$. For $f, g \in \mathcal{I}(P)$, define the product $fg \in \mathcal{I}(P)$ by

$$fg(x, y) = \sum_{x \leq z \leq y} f(x, z)g(z, y).$$

It is easy to see that this product makes $\mathcal{I}(P)$ an associative \mathbb{Q}-algebra, with multiplicative identity δ given by

$$\delta(x, y) = \begin{cases}
1, & x = y \\
0, & x < y.
\end{cases}$$

Define the \textit{zeta function} $\zeta \in \mathcal{I}(P)$ of P by $\zeta(x, y) = 1$ for all $x \leq y$ in P. Note that the M"obius function μ is an element of $\mathcal{I}(P)$. The definition of μ (Definition 1.2) is
equivalent to the relation $\mu \zeta = \delta$ in $\mathcal{I}(P)$. In any finite-dimensional algebra over a field, one-sided inverses are two-sided inverses, so $\mu = \zeta^{-1}$ in $\mathcal{I}(P)$.

Theorem 1.1. Let P be a finite poset with Möbius function μ, and let $f, g : P \to K$. Then the following two conditions are equivalent:

\[
 f(x) = \sum_{y \geq x} g(y), \text{ for all } x \in P
\]

\[
 g(x) = \sum_{y \geq x} \mu(x, y)f(y), \text{ for all } x \in P.
\]

Proof. The set K^P of all functions $P \to K$ forms a vector space on which $\mathcal{I}(P)$ acts (on the left) as an algebra of linear transformations by

\[
 (\xi f)(x) = \sum_{y \geq x} \xi(x, y)f(y),
\]

where $f \in K^P$ and $\xi \in \mathcal{I}(P)$. The Möbius inversion formula is then nothing but the statement

\[
 \zeta f = g \iff f = \mu g.
\]

We now come to the main concept of this section.

Definition 1.3. The **characteristic polynomial** $\chi_A(t)$ of the arrangement A is defined by

\[
 \chi_A(t) = \sum_{x \in L(A)} \mu(x) t^{\dim(x)}.
\]

For instance, if A is the arrangement of Figure 3, then

\[
 \chi_A(t) = t^3 - 4t^2 + 5t - 2 = (t-1)^2(t-2).
\]

Note that we have immediately from the definition of $\chi_A(t)$, where A is in K^n, that

\[
 \chi_A(t) = t^n - (\#A) t^{n-1} + \cdots.
\]

Example 1.4. Consider the coordinate hyperplane arrangement A with defining polynomial $Q_A(x) = x_1x_2 \cdots x_n$. Every subset of the hyperplanes in A has a different nonempty intersection, so $L(A)$ is isomorphic to the boolean algebra B_n of all subsets of $[n] = \{1,2,\ldots,n\}$, ordered by inclusion.

Proposition 1.2. Let A be given by the above example. Then $\chi_A(t) = (t - 1)^n$.

Proof. The computation of the Möbius function of a boolean algebra is a standard result in enumerative combinatorics with many proofs. We will give here a naive proof from first principles. Let $y \in L(A)$, $r(y) = k$. We claim that

\[
 \mu(y) = (-1)^k.
\]

The assertion is clearly true for $r(k) = 0$, when $y = 0$. Now let $y > 0$. We need to show that

\[
 \sum_{x \leq y} (-1)^{rk(x)} = 0.
\]
The number of x such that $x \leq y$ and $rk(x) = i$ is $\binom{k}{i}$, so (5) is equivalent to the well-known identity (easily proved by substituting $q = -1$ in the binomial expansion of $(q + 1)^k \sum_{i=0}^{k} (-1)^i \binom{k}{i} = 0$ for $k > 0$. \qed