Thm (E-L): Let \(\mathcal{F} \) be \(k \)-uniform, intersecting, and \(|\mathcal{F}| > k^k \). Then \(\mathcal{F} \) is 2-colorable.

Proof: By contradiction, \(\mathcal{F} \) not 2-colorable \(\Rightarrow |\mathcal{F}| \leq k^k \)

Let \(d(B) = \# S \in \mathcal{F} \) s.t. \(B \subseteq S \).

Claim: \(\exists \) a sequence \(x_1, \ldots, x_k \in \bigcap \mathcal{F} \) s.t.
\[
d(B_i) \geq \frac{|\mathcal{F}|}{k^k} \quad B_i = \{x_1, \ldots, x_i\}
\]

Claim \(\Rightarrow \) thm: \(1 \geq d(B) \geq \frac{|\mathcal{F}|}{k^k} \)

Proof of claim by induction on \(i \):

Base: \(i = 1 \) pigeonhole

Step of Induction: Suppose \(B_i \) for \(i \) already chosen.

If \(B_i \cap S_j \neq \emptyset \) for \(S_j \in \mathcal{F} \), can 2-color \(\mathcal{F} \)

So let \(x_i \in S_j \) be the one which belongs to the largest \# of subsets containing \(B_i \).

This is \(\geq d(B) / k \) by sim. argument to base.

"Okay, so, I'm going to move to colorings of graphs."

Notation: Let \(d(G) = \max_{v \in G} d(v) \)
\[
\chi(G) = \text{usu.}
\]
Proposition

\[d(G) = k \Rightarrow \chi(G) \leq k+1 \]

Prop'sn:

\[d(G) = k \text{, } \exists x \in V(G) \text{ s.t. } d(x) = k \Rightarrow \]

pf: Let small deg vertex be root, orient edges acyclicly.

sort out vertices by distance from \(x \), note all edges are w/in same dist or from \(x \).

Run greedy algorithm starting \(x \). Note that always have one uncolored neighbor until \(x + d(x) = k-1 \).

(similar in Bollobás) (aha!)

(This is a real) Theorem (Brooks 1949)

\[d(G) \leq k \text{ and } G \neq K_{k+1} \text{ and } k \geq 3. \]

Then \(\chi(G) \leq k \). (G connected)

pf: Need only prove for \(G \) being \(k \)-regular, as above.

Def'n: \(G \) is \(k \)-connected if \(G - \{x_1, \ldots, x_k\} \) is connected.

Okay, for \(G \) 2-connected, pinch vertex \(\checkmark \)

\(G \) 3-connected. Take \(x_n \), let \(x_1, x_2 \in N(x_n) \).

\(\exists x_1, x_2 \in E(G) \). Look at \(G - x_1, x_2 \). If \(G \) 3-connected, still connected. Construct sequence w/

\(x_n \) as root, forward neighbor rule, \(x_1 \) and \(x_2 \)

1st 2 vertices + color them the same.

color \(\Rightarrow \checkmark \) cool.