\[
\beta_n = \text{poset of } P(\mathbb{N})
\]

Thm (Sperner, 1928)

Every antichain has size \(\leq \left(\begin{array}{c} n \\ \frac{n}{2} \end{array} \right) \)

Pf (from Jukna): \(\mathcal{F} = \{ A : A \subseteq [n] \text{ antichain} \}

Pick \(A \in \mathcal{F} \) and look at all max. chains in \([n]\)
containing \(A \). \(|A| = k \Rightarrow \# \text{ chains } = \binom{n}{n-k} \)
Also none of the max. chains in \(B \), meet \(\mathcal{F} \) more than once, so
\[n! \geq \left| \bigcup (n-|A|)! \geq \frac{n!}{n^{|A|}} \cdot \left(\frac{n}{|A|} \right)^{|A|} \]
\[\Rightarrow |B| \leq \left(\frac{n}{|A|} \right)^{|A|} \]

Thm (Mahtel, 1907)

\[|V(G)| = 2n \quad |E(G)| \geq n^2 + 1 \]

\[\Rightarrow \Delta \leq G \]

Pf: (From Jukna Ch 4) induction base \(n=1 \)

Step: 2n+2 vertices, pick \((x,y) \in E \) \(H = G - x - y \)

\[|E(H)| \geq n^2 + 1 \Rightarrow \sqrt{|E(H)|} < n^2 + 1 \Rightarrow \]

\[|N(x)| + |N(y)| \geq 2n + 1 \Rightarrow N(x) \cap N(y) \neq \emptyset \]

Second proof is more lively:

\(A \subset V(G) \) largest indep set (i.e. \(A \text{indep, } |A| = \alpha(G) \))

\[B = V - A \quad \forall x \in B \quad N(x) \cap A \neq \emptyset \text{ and } \]

\[|N(x)| \leq \alpha(G) = |A| \quad \text{co/wh \exists } x \in B \text{ s.t. } u \in x \wedge v \in y \]

\[|E| \leq \sum_{x \in B} \deg x \leq \sum |A| = |B| \cdot |A| \leq \left(\frac{|A| + |B|}{2} \right)^2 = \frac{n^2}{2} \]

Thm (Graham-Kleitman 1973)

\(\alpha : E(K_n) \leftrightarrow \Sigma(9) \) labelling of edges

Then the longest increasing trail has length \(> (n-1) \)

(trail: oriented path that can go through the same \(v \) more than once)
Proof: Let $w_* = \text{length of longest inc. tail ending at } x$

$\text{ETST } \leq w_* \geq n(n-1)$

Start: $x \leq w = 0$

i^{th} step: look at $v_i = x y$

this increases w by y makes

$w' = \max \{ w, w + 1 \}$

\Rightarrow every edge addition increases weight sum by 2

$\Rightarrow w_* \geq (\frac{3}{2})2$