Instructions: Solve your favourite problems from the list below. Open problems are marked with \(\star \); hard (but feasible) problems are marked with \(\star \).

1. Let \(a(P) \) denote the number of angles determined by ordered triples of a set \(P \) of non-collinear points in the plane. (We count angles \(0^\circ \leq \angle(p_1,p_2,p_3) < 180^\circ \).) For \(n \in \mathbb{N}, n \geq 3 \), let \(a(n) = \min_{|P|=n} a(P) \).

 (a) For every \(n \in \mathbb{N}, n \geq 3 \), find a set \(P_n \) of \(n \) points such that \(a(P_n) = n - 2 \).

 (b) Show that \(a(n) = \Omega(n) \).

 (c) Prove or disprove that \(a(n) = n - 2 \). \(\star \)

2. Prove the Sylvester-Gallai Theorem for a system of non-concurrent \textit{pseudo-lines} in the plane: You are given a set of curves in the plane such that any two curves intersect in exactly one point, and no point is incident to all the curves. Show that there is a point incident to exactly two curves.

3. We are given \(n \) points and \(\ell \) curves or surfaces in \(\mathbb{R}^d \), \(d \geq 2 \). For any two real numbers \(a, b > 1 \), find two reals \(e, f \in \mathbb{R} \) (in terms of \(a \) and \(b \)) such that

 \[
 \#(k\text{-rich lines}) = O\left(\frac{n^a}{k^b} \right), \quad \forall k \in \mathbb{N} \iff \#(\text{incidences}) = O(n^e \ell^f).
 \]

4. (Elekes) Let \(X \) and \(Y \) be two sets of \(n \) real numbers \((X,Y \subset \mathbb{R}, |X| = |Y| = n) \). Consider the Cartesian product \(P = X \times Y = \{(x,y) \in \mathbb{R}^2 : x \in X, y \in Y \} \) in the plane. Show that the number of collinear triples of \(P \) is at most \(O(n^4 \log n) \).

5. (Erdős) Consider \(n \) points in an integer lattice section \(P = \{(a,b) \in \mathbb{N}^2 : 1 \leq a \leq \sqrt{n}, 1 \leq b \leq \sqrt{n} \} \) in the plane. Show that for every \(\ell \in \mathbb{N}, \ell \geq \sqrt{n} \), there are \(\ell \) lines in the plane such that the number of incidences with \(P \) is at least \(\Omega(n^{2/3} \ell^{2/3} + n + \ell) \).

6. (Valtr, 2005) Let \(\partial B \) denote the boundary curve of a convex compact body \(B \). Find a strictly convex compact body \(B \) in the plane with the following property: There are \(n \) translates of \(\partial B \) and \(n \) points in the plane such that the number of point-curve incidences is at least \(\Omega(n^{4/3}) \). \(\star \)

7. We are given \(n \) points and \(\ell \) circles in the plane such that exactly \(x \) pairs of circles intersect. Show that the number of point-circle incidences is at most \(O(n^{2/3}x^{1/3} + n + \ell) \).

8. Given a set \(S_n \) of \(n \) points in the plane, let \(g(S_n) \) denote the number of \textit{unit peremeter triangles} (that is, triangles where the sum of the three edge lengths is one).

 (a) Show that \(g(S_n) = O(n^{7/3}) \).

 (b) Show that \(g(S_n) = O(n^{16/7}) \). \(\star \)

9. (Hanani, 1934) If any two edges of a topological graph cross an even number of times, then the graph is planar. \(\star \)