Waves and Imaging
Class notes - 18.325

Laurent Demanet

Draft April 7, 2015
Preface

In the margins of this text we use

- the symbol (!) to draw attention when a physical assumption or simplification is made; and

- the symbol ($) to draw attention when a mathematical fact is stated without proof.

Thanks are extended to the following people for discussions, suggestions, and contributions to early drafts: William Symes, Thibaut Lienart, Nicholas Maxwell, Pierre-David Letourneau, Russell Hewett, and Vincent Jugnon.

These notes are accompanied by computer exercises in Python, that show how to code the adjoint-state method in 1D, in a step-by-step fashion, from scratch. They are provided by Russell Hewett, as part of our software platform, the Python Seismic Imaging Toolbox (PySIT), available at http://pysit.org.
Contents

1 Wave equations
1.1 Physical models ... 9
1.1.1 Acoustic waves ... 9
1.1.2 Elastic waves ... 13
1.1.3 Electromagnetic waves .. 17
1.2 Special solutions ... 19
1.2.1 Plane waves, dispersion relations 19
1.2.2 Traveling waves, characteristic equations 24
1.2.3 Spherical waves, Green’s functions 29
1.2.4 The Helmholtz equation .. 34
1.2.5 Reflected waves ... 35
1.3 Exercises ... 39

2 Geometrical optics ... 43
2.1 Traveltimes and Green’s functions 43
2.2 Rays ... 47
2.3 Amplitudes ... 49
2.4 Caustics ... 51
2.5 Exercises ... 53

3 Scattering series .. 55
3.1 Perturbations and Born series 56
3.2 Convergence of the Born series (math) 59
3.3 Convergence of the Born series (physics) 63
3.4 A first look at optimization 65
3.5 Exercises ... 68
CONTENTS

4 Adjoint-state methods .. 73
 4.1 The imaging condition 74
 4.2 The imaging condition in the frequency domain 78
 4.3 The general adjoint-state method 79
 4.4 The adjoint state as a Lagrange multiplier 84
 4.5 Exercises .. 85

5 Synthetic-aperture radar 87
 5.1 Assumptions and vocabulary 87
 5.2 Forward model ... 89
 5.3 Filtered backprojection 92
 5.4 Resolution .. 97
 5.5 Exercises ... 97

6 Computerized tomography 99
 6.1 Assumptions and vocabulary 99
 6.2 The Radon transform and its inverse 99
 6.3 Exercises ... 101

7 Seismic imaging .. 103
 7.1 Assumptions and vocabulary 103
 7.2 Kirchhoff modeling and migration 105
 7.3 Depth extrapolation 106
 7.4 Extended modeling 106
 7.5 Exercises ... 106

8 Microlocal analysis of imaging 107
 8.1 Preservation of the wavefront set 107
 8.2 Characterization of the wavefront set 113
 8.3 Pseudodifferential theory 119
 8.4 Exercises ... 119

9 Optimization .. 121
 9.1 Regularization and sparsity 121
 9.2 Dimensionality reduction techniques 121

A Calculus of variations, functional derivatives 123

B Finite difference methods for wave equations 127
CONTENTS

C Stationary phase 129