16. Calculate the **roof area** of Kresge auditorium, working from the theory that this familiar object is shaped like a paraboloid of revolution

\[z = \frac{a^2 - x^2 - y^2}{2a}, \]

truncated by vertical cylinders of radius \(\sqrt{3}a \) centered on the opposite vertices.

17. In the spirit of **Gaussian quadrature**:

(a) determine **polynomials** \(p_0(x), p_1(x) \) and \(p_2(x) \) such that

\[\int_{0}^{1} \sqrt{x} p_m(x) p_n(x) \, dx = 0 \quad \text{for} \quad m \neq n, \]

(b) find **weights** \(w_1 \) and \(w_2 \) such that the estimate

\[\int_{0}^{1} \sqrt{x} f(x) \, dx = w_1 f(x_1) + w_2 f(x_2) \]

based on the roots \(x_1 \) and \(x_2 \) of \(p_2(x) \) becomes exact for all **cubic** polynomials, and

(c) finally **test** this fancy folderol on the integral \(\int_{0}^{1} \frac{1}{\sin x} \, dx \).

18. Evaluate the sum

\[S = \sum_{k=1}^{\infty} \left(\frac{1}{x_k}\right)^2, \]

where \(x_k \) is the \(k \)-th positive root of \(x = \tan x \).

Work carefully here, and employ sensible extrapolations or some other finesse like

\[1 + 1/9 + 1/25 + 1/49 + 1/81 + \ldots = \pi^2/8. \]

Then you should find that this sum \(S \) equals a very simple fraction!