Chapter 10

10.1 QR Algorithm

\[A^{(0)} = A \]

for \(k = 1, 2, \ldots \)

\[Q^{(k)} R^{(k)} = A^{(k-1)} \]

\[A^{(k)} = R^{(k)} Q^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)} \]

10.2 With Shift

\[(Q^{(0)})^T A^{(0)} Q^{(0)} = A \]

for \(k = 1, 2, \ldots \)

Pick shift \(\mu^{(k)} \), e.g. \(\mu^{(k)} = A^{(k-1)}_{m,m} \)

\[Q^{(k)} R^{(k)} = A^{(k-1)} - \mu^{(k)} I \]

\[A^{(k)} = R^{(k)} Q^{(k)} + \mu^{(k)} I = (Q^{(k)})^T A^{(k-1)} Q^{(k)} \]

If any \(A^{(k)}_{j,j+1} \) is "small", e.g. \(< 0(\epsilon) \| A \|\), set it to 0 and break the problem in 2.