18.335 Problem Set 1

Problem 1: Gaussian elimination
Trefethen, problem 20.4.

Problem 2: Asymptotic notation
This problem asks a few simple questions to make sure that you understand the asymptotic notations O, Ω, and Θ as defined in the handout in class, and also to make sure you are comfortable with simple proofs. (A detailed review of asymptotic notation can be found in any computer-science textbook, or on many sites online.)

(a) If $f(n)$ is $\Theta[F(n)]$ and $g(n)$ is $\Theta[G(n)]$ for nonnegative functions f, g, F, and G, prove that $f(n) + g(n)$ is $\Theta[F(n) + G(n)]$.

(b) Prove that $f(n)$ is $O[g(n)]$ if and only if $g(n)$ is $\Omega[f(n)]$. [For example, n^2 is $O(n^3)$ and n^3 is $\Omega(n^2)$.]

(c) If $f(n)$ is $O[F(n)]$, prove that any function that is $O[f(n) + cF(n)]$ must also be $O[F(n)]$ for any constant $c \neq 0$—that is, if we regard $O[\cdots]$ as a set of functions, prove $O[f(n) + cF(n)] \subseteq O[F(n)]$. [For example, $O(n^2 + 3n^3) = O(n^3)$.] Is it also true that $\Theta[f(n) + cF(n)] \subseteq \Theta[F(n)]$ for any $c \neq 0$ if $f(n)$ is $O[F(n)]$? Explain.

(d) Explain why the statement, “The running time of this algorithm is $O(n^2)$ or worse,” cannot provide any information about the algorithm.

Problem 3: Caches and matrix multiplications
In class, we considered the performance and cache complexity of matrix multiplication $A = BC$, especially for square $m \times m$ matrices, and showed how to reduce the number of cache misses using various forms of blocking. In this problem, you will be comparing optimized matrix-matrix products to optimized matrix-vector products, using Matlab.

(a) The code matmul_bycolumn.m posted on the 18.335 web page computes $A = BC$ by multiplying B by each column of C individually (using Matlab’s highly-optimized BLAS matrix-vector product). Benchmark this: plot the flop rate for square $m \times m$ matrices as a function of m, and also benchmark Matlab’s built-in matrix-matrix product and plot it too. For example, Matlab code to benchmark Matlab’s $m \times m$ products for $m = 1, \ldots, 1000$, storing the flop rate ($2m^3$/nanoseconds) in an array gflops(m), is:

```matlab
gflops = zeros(1,1000);
for m = 1:1000
    A = rand(m,m);
    B = rand(m,m);
    t = 0;
    iters = 1;
    % run benchmark for at least 0.1 seconds
    while (t < 0.1)
        tic
        for iter = 1:iters
            % do something
            t = toc;
        end
        t = t / iters;
    end
    gflops(m) = 2*m^3/t;
end
```

1
\[
C = A \ast B;
\]
end
t = toc; \% elapsed time in seconds
iters = iters \ast 2;
end
gflops(m) = 2\ast m^3 \ast 1e-9 / (t \ast 2/iters);
disp(sprintf('gflops for \%d = \%g after \%d iters\',m,gflops(m),iters/2));
drawnow update;
end
plot([1:1000], gflops, 'r-')

(b) Compute the cache complexity (the asymptotic number of cache misses in the ideal-cache model, as in class) of an \(m \times m\) matrix-vector product implemented the “obvious” way (a sequence of row-column dot products).

c) Propose an algorithm for matrix-vector products that obtains a better asymptotic cache complexity (or at least a better constant coefficient, e.g. going from \(\sim 3m^2\) to \(\sim 2m^2\), even if it is still the same \(\Theta\{\cdots\}\) complexity) by dividing the operation into some kind of blocks.

d) Assuming Matlab uses something like your “improved” algorithm from part (c) to do matrix-vector products, compute the cache complexity of matmul_bycolumn. Compare this to the cache complexity of the blocked matrix-matrix multiply from class. Does this help to explain your results from part (a)?

Problem 4: Caches and backsubstitution

In this problem, you will consider the impact of caches (again in the ideal-cache model from class) on the problem of backsubstitution: solving \(Rx = b\) for \(x\), where \(R\) is an \(m \times m\) upper-triangular matrix (such as might be obtained by Gaussian elimination). The simple algorithm you probably learned in previous linear-algebra classes (and reviewed in the book, lecture 17) is (processing the rows from bottom to top):

\[
x_m = b_m / r_{mm}
\]
for \(j = m - 1\) down to 1
\[
x_j = (b_j - \sum_{k=j+1}^{m} r_{jk}x_k) / r_{jj}
\]

Suppose that \(X\) and \(B\) are \(m \times n\) matrices, and we want to solve \(RX = B\) for \(X\)—this is equivalent to solving \(Rx = b\) for \(n\) different right-hand sides \(b\) (the \(n\) columns of \(B\)). One way to solve the \(RX = B\) for \(X\) is to apply the standard backsubstitution algorithm, above, to each of the \(n\) columns in sequence.

(a) Give the asymptotic cache complexity \(Q(m, n; Z)\) (in asymptotic \(\Theta\) notation, ignoring constant factors) of this algorithm for solving \(RX = B\).

(b) Suppose \(m = n\). Propose an algorithm for solving \(RX = B\) that achieves a better asymptotic cache complexity (by cache-aware/blocking or cache-oblivious algorithms, your choice). Can you gain the factor of \(1/\sqrt{Z}\) savings that we showed is possible for square-matrix multiplication?