Problem 1: Hessenberg ahead!

In class, we described an algorithm to find the Hessenberg factorization \(A = QHQ^* \) of an arbitrary matrix \(A \), where \(H \) is upper-triangular plus nonzero elements just below the diagonal, and \(H \) has the same eigenvalues as \(A \). Suppose \(A \) is Hermitian, in which case \(H \) is Hermitian and tridiagonal. Given the Hessenberg factorization \(H \), we mentioned in class that many things become much easier, e.g. we can evaluate \(p(z) = \det(A - zI) = \det(H - zI) \) in \(O(m) \) operations for a given \(z \).

(a) Let \(B \) be an arbitrary \(m \times m \) tridiagonal matrix. Argue that \(\det(B) = \det(B_{1,m-1} - B_{m-1,m}) \cdot \det(B_{1,m-2} - B_{m-2,m-1}) \cdots \det(B_{1,2} - B_{2,1}) \). Use this recurrence relation to write a Matlab function \texttt{evalpoly.m} that evaluates \(p(z) \) in \(O(m) \) time, given the tridiagonal \(H \) and \(z \) as arguments. Check that your function works by comparing it to computing \(\det(H - zI) \) directly with the Matlab \texttt{det} function.

(b) Explain how, given the tridiagonal \(H \), we can compute also the derivative \(p'(z) \) for a given \(z \) in \(O(m) \) operations. (Not the coefficients of the polynomial \(p' \), just its value at \(z \)!) Modify your \texttt{evalpoly.m} routine to return both \(p(z) \) and its derivative \(p'(z) \). That is, your function should look like:

\[
[p, pderiv] = \text{evalpoly}(H, z)
\]

......compute \(p \), \(pderiv \)......

Check that your function works by comparing your \(p'(z) \) to \([p(z + \Delta z) - p(z - \Delta z)]/2\Delta z \) for various \(z \) and small \(\Delta z \).

(c) Using your function \texttt{evalpoly}, implement Newton’s method to compute some eigenvalues of a random real-symmetric matrix, and compare them to those returned by Matlab’s \texttt{eig} function—how many significant digits of accuracy do you get?

That is, to get a random real-symmetric \(A \), compute \(X = \text{rand}(m) \); \(A = X'X \); then, compute \(H = \text{hess}(A) \) to get \(H \). Then compute the eigenvalues with \texttt{eig(A)}, and apply Newton’s method starting at a few different points to converge to some different eigenvalues.

Problem 2: Q’s ‘R us

(a) Trefethen, problem 27.5

(b) Trefethen, problem 28.2

Problem 3:

Trefethen, problem 33.2.

Reminder: final project proposals

A half-page final-project proposal is due on October 29, outlining the goal and scope of your proposed paper. Problems motivated by your research are perfectly fine, although you shouldn’t simply recycle something you’ve already done. The only restriction is that, since PDEs are covered in 18.336 and other courses, I don’t want projects where the primary focus is how to discretize the PDE (e.g. no projects on discontinuous Galerkin methods or stable time-stepping, please). It is fine to take a discretized PDE as \textit{input}, however, and then work on solvers, preconditioning, optimization, etcetera. Methods for ODEs are also fair game (especially recent developments that go beyond classic Runge-Kutta). One source of ideas might be to thumb through a copy of \textit{Numerical Recipes} or a similar book and find a topic that interests you. Then go read some recent review papers on that topic (overview books like \textit{Numerical Recipes} are not always trustworthy guides to a specific field).
18.335J / 6.337J Introduction to Numerical Methods
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.