cache hit: CPU needs item in cache (fast)
cache miss: CPU needs item not in cache
 — item loaded into cache for future use, replacing some other item

optimal replacement: on cache miss, loaded item replaces item that will not be needed for the longest time in the future

[more realistic scheme: LRU replacement — replace least recently used item
 — provably within small constant factor of optimal, but much harder to analyze]

fully associative — any item in memory can go anywhere in the cache
 [real caches have limited associativity, which causes “unlucky” memory-access patterns to go same place in cache
 …effectively shrinks cache in these cases]

temporal locality — same item is re-used for several computations that are close to one another in time ⇒ still in-cache ⇒ efficient

[there is also spatial locality — items close to one another in main memory are used close in time … exploited by cache lines, TBD]

cache complexity — the number of cache misses $Q(n; Z)$ required for a given algorithm running on a problem of size n with cache of size Z
 … usually only given as asymptotic result for large n, Z, ignoring constant factors

asymptotic notation:
 we say a function $f(n)$ is $O(g(n))$ if $g(n)$ is an asymptotic upper bound for $f(n)$, ignoring constant factors. Technically, if $|f(n)| < C |g(n)|$ for some constant $C > 0$
 for all sufficiently large n (i.e., for all $n > N$ for some N)

 we say a function $f(n)$ is $\Omega(g(n))$ if $g(n)$ is an asymptotic lower bound for $f(n)$, ignoring constant factors. Technically, if $|f(n)| > C |g(n)|$ for some constant $C > 0$
 for all sufficiently large n (i.e., for all $n > N$ for some N)

 we say a function $f(n)$ is $\Theta(g(n))$ if $g(n)$ is an asymptotic tight bound for $f(n)$, ignoring constant factors. Technically, if $f(n)$ is both $O(g(n))$ and $\Omega(g(n))$