Problem 1 – PCP basics

Prove the following statements:

a) $PCP_{c,s}[r,q]_{\Sigma} \subseteq PCP_{c,s}[r,q \cdot \log |\Sigma|]_{\{0,1\}}$.

b) $PCP_{1,s}[r,q]_{\{0,1\}} \subseteq PCP_{1,1-\frac{c}{4}+\frac{\log q}{q}}[r + \log q, 2]_{\{0,1\}^q}$.

c) If $|\Sigma| \leq \text{poly}(n)$, then $PCP_{c,s}[O(\log n), 1]_{\Sigma} \subseteq P$.

Problem 2 – Algorithms for MAX-SAT

a) Give a randomized algorithm that, given a 2CNF formula ψ with exactly 2 distinct literals per clause, outputs an assignment that satisfies at least a $3/4$ fraction of ψ’s clauses.

b) Give a deterministic algorithm that, given a 3CNF formula ψ with exactly 3 distinct literals per clause, outputs an assignment that satisfies at least a $7/8$ fraction of ψ’s clauses.

Problem 3: Hardness for CLIQUE

In class, we saw how to prove that it is NP-hard to approximate independent set to within a constant factor by using the [FGLSS] reduction. By complementing the graph, this gives the same hardness of approximation result for clique. In this problem, we will see a slightly different way to prove that it is NP-hard to approximate clique to within a constant factor.

Given a graph $G = (V, E)$ and an integer k, define the kth power of G, $G^k = (V', E')$ to be as follows. The vertex set V' is V^k, the set of k-tuples of vertices from V. Two distinct vertices (u_1, \ldots, u_k) and (v_1, \ldots, v_k) have an edge between them in E' iff $\{u_1, \ldots, u_k, v_1, \ldots, v_k\}$ is a clique in G.

Define $\omega(G)$ to be the size of the largest clique in G.

a) Show that $\omega(G^k) = \omega(G)^k$.

b) We know from the PCP Theorem that it is NP-hard to ρ-approximate CLIQUE for some constant ρ. Use this with part a) to show that, for any constant ρ', there is no ρ'-approximation algorithm for CLIQUE unless $P=NP$.

1Under stronger assumptions, we can use this method to get an even better result. For example, unless $NP \subseteq \bigcup_{c \geq 1} \text{DTIME}(2^{(\log n)^c})$, CLIQUE does not admit a polynomial time $2^{-\log^\gamma(n)}$-approximation algorithm.
Problem 4 – Hardness of Approximation from Håstad

In this problem, we will use a version of the PCP Theorem proved by Håstad: completeness is $1 - \varepsilon$, soundness is $1/2 + \varepsilon$, the number of queries is 3, and all predicates ψ the verifier uses are of the form $x_{i_1} + x_{i_2} + x_{i_3} = b \mod 2$, where b is 0 or 1, and ε can be taken to be any positive constant.

a) Let MAX-3LIN be the maximization problem where the input is a set of 3-variable linear equations mod 2 and the goal is to find an assignment satisfying as many equations as possible. Show that for any $\varepsilon > 0$, there is no $(1/2 + \varepsilon)$-approximation algorithm for MAX-3LIN unless P=NP.

b) Assuming $P \neq NP$, show that we cannot improve Håstad’s PCP Theorem to have completeness 1 while preserving the other parameters.

One of the reasons that we like Håstad’s PCP so much is not only that it gives an optimal hardness of approximation result for MAX-3LIN, but also that it allows us to get hardness of approximation results for many other problems, like the following:

- **MAX-E3SAT** is the maximization problem where the input is a CNF where each clause has exactly three literals and the goal is to find an assignment satisfying as many clauses as possible.

- **MAX-3MAJ** is the optimization problem where the input is a set of constraints over 3 boolean literals, where each constraint asserts that the majority of its three literals’ values is 1.

- **MAX-2SAT** be the problem of computing the maximum number of satisfiable clauses in a 2-CNF instance, where each clause contains at most 2 literals.

We will now use Håstad’s result to prove hardness of approximation results for each of these problems.

c) Show that for any $\varepsilon > 0$, there is no $(7/8 + \varepsilon)$-approximation algorithm for MAX-E3SAT unless P=NP. (Hint: Reduce from MAX-3LIN)

d) Show that for any $\varepsilon > 0$, there is no $(2/3 + \varepsilon)$-approximation algorithm for MAX-3MAJ unless P=NP. (Hint: Reduce from MAX-3LIN)

e) Show that there is an α such that $.99 < \alpha < 3/4$ such that it is NP-hard to approximate MAX-2SAT within a factor of α. (Hint: Reduce from MAX-E3SAT)

Problem 5 (Optional): A “Long Code” Test

This problem is meant as an introduction to use of Fourier analysis in complexity theory. Although, the problem is optional and will not be graded, you are encouraged to work on it for your own benefit and discuss it with us or each other.

Let $[n] = \{1, \ldots, n\}$. For $S \subseteq [n]$, define $\chi_S : \{-1, 1\}^n \to \mathbb{R}$ as $\chi_S(x) = \prod_{i \in S} x_i$. It is not hard to see that

$$\forall S \neq T, \quad \sum_x \chi_S(x)\chi_T(x) = 0,$$

2In fact, there is a 2/3-approximation algorithm for MAX-3MAJ, making this result tight.

3For this problem we work with the representation of Boolean hypercube as $\{-1, 1\}^n$. One could equivalently work with the $\{0, 1\}^n$ representation; for this simply change the definition of $\chi_S(x)$ to $(-1)^{\sum_i x_i}$. The $\{-1, 1\}^n$ representation however is usually more convenient.
Consider the following 3-query test (the “NAE” test) on a function $f : \{-1,1\}^n \to \mathbb{R}$.

a) Let a, b, c be linear functions BLR test, which is a 3-query test for the class of functions over the Boolean hypercube (with respect to the inner product $(f,g) = \frac{1}{2^n} \sum_x f(x)g(x)$). Hence, every function $f : \{-1,1\}^n \to \mathbb{R}$ can be written as linear combinations of χ_S's as

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x),$$

where the $\hat{f}(S)$'s are called the Fourier coefficients of f.\footnote{For further information on the use of Fourier analysis in complexity theory, visit http://www.cs.cmu.edu/~odonnell/boolean-analysis/. Lectures 2 and 3 will provide sufficient background for solving this problem.}

i) Show that $\hat{f}(S)$ as defined by Eq. (1) satisfies $\hat{f}(S) = E_x f(x) \chi_S(x)$, where the expectation is taken with respect to the uniform distribution.

ii) Let $S \subseteq [n]$ be a set of Boolean functions $\{-1,1\} \to \{-1,1\}$. A local test for C works as follows: Given an unknown function $f : \{-1,1\}^n \to \{-1,1\}$ given as a table of values, a local test makes q queries to f. If $f \in C$ the test should accept with probability 1, and if f is δ-far from every function in C then the test should reject with probability $\Omega(\delta)$. One example of a local test that we saw in class (and also above) is the BLR test, which is a 3-query test for the class of linear functions $C = \{\chi_S : S \subseteq [n]\}$. In this problem we will develop a 6-query test for “dictator functions” $D = \{\chi_i : i \in [n]\}$ - i.e. the set of functions of the form $f(x) = x_i$ for some $i \in [n]$.

a) Let $a, b, c \in \{-1,1\}$ be bits. Give an expression in terms of a, b, c which evaluates to 0 if $a = b = c$, and to 1 otherwise. (This is called the Not All Equal (NAE) predicate.)

b) Consider the following 3-query test (the “NAE” test) on a function f: Pick $x, y, z \in \{-1,1\}$ in the following way: Pick (x_i, y_i, z_i) at random from $\{-1,1\} \times \{0,1\} \times \{-1,1\}$, i.e. so that x_i, y_i, and z_i are not all equal. Do this for each coordinate $i \in [n]$ to construct x, y, and z. Then, test that $f(x)$, $f(y)$, and $f(z)$ are not all equal.

Show that

$$\Pr[\text{NAE test accepts}] = \frac{3}{4} - \frac{3}{4} \sum_{S \subseteq [n]} \hat{f}(S)^2(-1/3)^{|S|}$$

(As an aside, note that if f is a dictator, the NAE test accepts with probability 1.)

c) Give a 6-query local test for D (Hint: Combine the BLR and NAE tests).

\textbf{Note:} The “Long Code” was used by Håstad to prove the inapproximability result for MAX-3LIN referenced in problem 4. This code encodes a string $w \in \{-1,1\}^{\log n}$ with the truth table of the dictator function $\chi_w : \{-1,1\}^n \to \{-1,1\}$, incurring a doubly exponential blowup. Håstad heavily uses Fourier analysis to analyze the 3-query test of his PCP. The proof of this result is contained in chapter 22 of Arora-Barak.